Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine Quantenverbindung zwischen Licht und Mechanik

02.02.2012
Optomechanische Interaktionen
Vom Schweizerischen Nationalfonds (SNF) unterstützte Forschende stellen ein mikroskopisches System vor, das Licht in mechanische Schwingung und umgekehrt umwandeln kann. Diese Interaktion ist so stark, dass damit die Bewegung des Oszillators auf einer quantenmechanischen Ebene beeinflussbar wird.

Seit Anfang des 20. Jahrhunderts ist bekannt, dass die Bewegung von Gegenständen letztlich über die Gesetze der Quantenmechanik gesteuert wird. Diesen Gesetzen zufolge kommt es zu einigen faszinierenden Phänomenen: Ein Gegenstand kann sich demnach gleichzeitig an zwei Orten befinden und ein Oszillator ist – selbst bei einer Temperatur auf dem absoluten Nullpunkt – stets in minimaler Bewegung. Dann befindet er sich in seinem sogenannten Quantengrundzustand. Bei den Dingen, die uns im Alltag umgeben, lässt sich ein derartiges Verhalten niemals beobachten.

Quantenparadoxe
Denn ein Quanteneffekt wird nur bei sehr gut isolierten Systemen sichtbar, wenn die Koppelung mit dem Umfeld äusserst schwach ist. Bei grossen Gegenständen kommen die Quanteneigenschaften wegen eines als Dekohärenz bezeichneten Vorgangs erst gar nicht zum Tragen. Bis vor Kurzem konnten Forschende quantenmechanische Merkmale lediglich bei der Bewegung winziger Systeme wie einzelner Atome oder Moleküle beobachten. Nun weist ein Team von Physikern unter der Leitung von Tobias J. Kippenberg an der Eidgenössischen Technischen Hochschule in Lausanne (EPFL) nach, dass es möglich ist, die Bewegung eines mit blossem Auge erkennbaren Objekts auf der vorwiegend von der Quantenmechanik gesteuerten Ebene zu steuern. Erreicht wurde dies durch die Beleuchtung des Gegenstands mit Laserlicht. Die Ergebnisse werden in der Zeitschrift «Nature» von dieser Woche veröffentlicht (*).

Ein Lichtring
Beim Objekt handelt es sich um einen sogenannten Mikroresonator, eine sorgfältig gefertigte gläserne Ringröhre, die auf einem Mikrochip mit einem Durchmesser von 30 Mikrometern (etwa halb so dick wie ein Haar) mit einer klar definierten Frequenz vibrieren kann. Gleichzeitig dient der Mikroresonator aus Glas als Laufspur für Licht, das darin zirkulieren kann. Beim Durchlaufen der Krümmung übt das Licht eine geringe Kraft auf die Glasoberfläche aus. Dieser Effekt wird Strahlungsdruck genannt. Obwohl dieser Druck sehr schwach ist, wächst die Kraft in der Ringröhre beträchtlich an: Das Licht zirkuliert bis zu einer Million Mal in der Struktur, bevor es sich verliert. So kann der Strahlungsdruck dazu führen, dass sich die Struktur bewegt. Der Mikroresonator vibriert, so wie ein Weinglas zu tönen beginnt, wenn man mit einem Finger an dessen Fassung entlangstreicht. Das Laserlicht kann die Vibrationen aber auch abschwächen und den Mikroresonator abkühlen.

Kalt, kälter …
Diese durch Laserlicht induzierte Kühlung des Mikroresonators ist entscheidend, um den quantenmechanischen Grundzustand zu erreichen: Normalerweise wird dieser Zustand nämlich durch zufällige Temperaturschwankungen überlagert. Der Mikroresonator ist auf eine Temperatur von weniger als einem Grad über dem absoluten Nullpunkt heruntergekühlt. Diese Temperatur reicht nicht aus, um in das Quantenregime vorzudringen. Zusätzlich schwächt daher der Strahlungsdruck des Laserlichts die mechanische Bewegung des Mikroresonators um einen weiteren Faktor von 100 ab. Dadurch wird der Oszillator so stark gekühlt, dass er sich einen Grossteil der Zeit in seinem Quantengrundzustand befindet.

Was jedoch noch wichtiger ist: Die Interaktion zwischen Licht und Bewegung des Oszillators kann darüber hinaus so verstärkt werden, dass beide Energieformen eine enge Verbindung eingehen. Eine kleine Anregung in Form eines Lichtimpulses kann gänzlich in eine geringe Vibration übergehen und umgekehrt. Zum ersten Mal erfolgt die Umwandlung von Licht und Bewegung innerhalb eines Zeitraums, der so kurz ist, dass die Quanteneigenschaften des ursprünglichen Lichtimpulses nicht während des Vorgangs durch Dekohärenz verlorengehen. Mit der Überwindung der Dekohärenz bieten die aktuellen Ergebnisse eine hervorragende Möglichkeit, die Quanteneigenschaften der Oszillatorbewegung zu steuern und die seltsamen Gesetze der Quantenmechanik in Objekten aus Menschenhand zu beobachten.

(*) E. Verhagen, S. Deléglise, S. Weis, A. Schliesser and T. J. Kippenberg (2012). Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature online DOI: 10.1038/nature10787
(als PDF-Datei beim SNF erhältlich; E-Mail: com@snf.ch)

Kontakt:
Prof. Tobias Kippenberg
Laboratory of Photonics and Quantum Measurements
Eidgenössische Technische Hochschule Lausanne (EPFL)
CH-1015 Lausanne
E-Mail: tobias.kippenberg@epfl.ch
Tel.: +41 (0)21 693 44 28

Kommunikation SNF | idw
Weitere Informationen:
http://www.snf.ch/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Max-Planck-Princeton-Partnerschaft in der Fusionsforschung bestätigt
23.11.2017 | Max-Planck-Institut für Plasmaphysik

nachricht Magnetfeld-Sensor Argus „sieht“ Kräfte im Bauteil
23.11.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungsnachrichten

Seminar „Leichtbau im Automobil- und Maschinenbau“ im Haus der Technik Berlin am 16. - 17. Januar 2018

23.11.2017 | Seminare Workshops

Biohausbau-Unternehmen Baufritz erhält von „ Capital“ die Auszeichnung „Beste Ausbilder Deutschlands“

23.11.2017 | Unternehmensmeldung