Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine Quantenverbindung zwischen Licht und Mechanik

02.02.2012
Optomechanische Interaktionen
Vom Schweizerischen Nationalfonds (SNF) unterstützte Forschende stellen ein mikroskopisches System vor, das Licht in mechanische Schwingung und umgekehrt umwandeln kann. Diese Interaktion ist so stark, dass damit die Bewegung des Oszillators auf einer quantenmechanischen Ebene beeinflussbar wird.

Seit Anfang des 20. Jahrhunderts ist bekannt, dass die Bewegung von Gegenständen letztlich über die Gesetze der Quantenmechanik gesteuert wird. Diesen Gesetzen zufolge kommt es zu einigen faszinierenden Phänomenen: Ein Gegenstand kann sich demnach gleichzeitig an zwei Orten befinden und ein Oszillator ist – selbst bei einer Temperatur auf dem absoluten Nullpunkt – stets in minimaler Bewegung. Dann befindet er sich in seinem sogenannten Quantengrundzustand. Bei den Dingen, die uns im Alltag umgeben, lässt sich ein derartiges Verhalten niemals beobachten.

Quantenparadoxe
Denn ein Quanteneffekt wird nur bei sehr gut isolierten Systemen sichtbar, wenn die Koppelung mit dem Umfeld äusserst schwach ist. Bei grossen Gegenständen kommen die Quanteneigenschaften wegen eines als Dekohärenz bezeichneten Vorgangs erst gar nicht zum Tragen. Bis vor Kurzem konnten Forschende quantenmechanische Merkmale lediglich bei der Bewegung winziger Systeme wie einzelner Atome oder Moleküle beobachten. Nun weist ein Team von Physikern unter der Leitung von Tobias J. Kippenberg an der Eidgenössischen Technischen Hochschule in Lausanne (EPFL) nach, dass es möglich ist, die Bewegung eines mit blossem Auge erkennbaren Objekts auf der vorwiegend von der Quantenmechanik gesteuerten Ebene zu steuern. Erreicht wurde dies durch die Beleuchtung des Gegenstands mit Laserlicht. Die Ergebnisse werden in der Zeitschrift «Nature» von dieser Woche veröffentlicht (*).

Ein Lichtring
Beim Objekt handelt es sich um einen sogenannten Mikroresonator, eine sorgfältig gefertigte gläserne Ringröhre, die auf einem Mikrochip mit einem Durchmesser von 30 Mikrometern (etwa halb so dick wie ein Haar) mit einer klar definierten Frequenz vibrieren kann. Gleichzeitig dient der Mikroresonator aus Glas als Laufspur für Licht, das darin zirkulieren kann. Beim Durchlaufen der Krümmung übt das Licht eine geringe Kraft auf die Glasoberfläche aus. Dieser Effekt wird Strahlungsdruck genannt. Obwohl dieser Druck sehr schwach ist, wächst die Kraft in der Ringröhre beträchtlich an: Das Licht zirkuliert bis zu einer Million Mal in der Struktur, bevor es sich verliert. So kann der Strahlungsdruck dazu führen, dass sich die Struktur bewegt. Der Mikroresonator vibriert, so wie ein Weinglas zu tönen beginnt, wenn man mit einem Finger an dessen Fassung entlangstreicht. Das Laserlicht kann die Vibrationen aber auch abschwächen und den Mikroresonator abkühlen.

Kalt, kälter …
Diese durch Laserlicht induzierte Kühlung des Mikroresonators ist entscheidend, um den quantenmechanischen Grundzustand zu erreichen: Normalerweise wird dieser Zustand nämlich durch zufällige Temperaturschwankungen überlagert. Der Mikroresonator ist auf eine Temperatur von weniger als einem Grad über dem absoluten Nullpunkt heruntergekühlt. Diese Temperatur reicht nicht aus, um in das Quantenregime vorzudringen. Zusätzlich schwächt daher der Strahlungsdruck des Laserlichts die mechanische Bewegung des Mikroresonators um einen weiteren Faktor von 100 ab. Dadurch wird der Oszillator so stark gekühlt, dass er sich einen Grossteil der Zeit in seinem Quantengrundzustand befindet.

Was jedoch noch wichtiger ist: Die Interaktion zwischen Licht und Bewegung des Oszillators kann darüber hinaus so verstärkt werden, dass beide Energieformen eine enge Verbindung eingehen. Eine kleine Anregung in Form eines Lichtimpulses kann gänzlich in eine geringe Vibration übergehen und umgekehrt. Zum ersten Mal erfolgt die Umwandlung von Licht und Bewegung innerhalb eines Zeitraums, der so kurz ist, dass die Quanteneigenschaften des ursprünglichen Lichtimpulses nicht während des Vorgangs durch Dekohärenz verlorengehen. Mit der Überwindung der Dekohärenz bieten die aktuellen Ergebnisse eine hervorragende Möglichkeit, die Quanteneigenschaften der Oszillatorbewegung zu steuern und die seltsamen Gesetze der Quantenmechanik in Objekten aus Menschenhand zu beobachten.

(*) E. Verhagen, S. Deléglise, S. Weis, A. Schliesser and T. J. Kippenberg (2012). Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature online DOI: 10.1038/nature10787
(als PDF-Datei beim SNF erhältlich; E-Mail: com@snf.ch)

Kontakt:
Prof. Tobias Kippenberg
Laboratory of Photonics and Quantum Measurements
Eidgenössische Technische Hochschule Lausanne (EPFL)
CH-1015 Lausanne
E-Mail: tobias.kippenberg@epfl.ch
Tel.: +41 (0)21 693 44 28

Kommunikation SNF | idw
Weitere Informationen:
http://www.snf.ch/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor
23.02.2017 | Universität Bayreuth

nachricht Kühler Zwerg und die sieben Planeten
23.02.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie