Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantentunneln im Kollektiv

18.10.2010
Wissenschaftler des MPQ, der LMU und des Weizmann-Instituts in Israel zeigen, wie das quantenmechanische Tunneln durch eine Barriere durch das Zusammenspiel vieler Teilchen dramatisch beeinflusst werden kann.

Quantensysteme verhalten sich oft anders, als es unsere Intuition und unsere alltäglichen Erfahrungen vermuten lassen. Ein Beispiel dafür ist das sogenannte Landau-Zener Problem aus der Quantenmechanik.

Es beschreibt unter anderem das Tunneln eines Quantenteilchens zwischen zwei Potentialtöpfen, deren anfänglich großer Energieunterschied durch langsames Verschieben der Niveaus allmählich umgekehrt wird. Der russische Physiker Lew Landau und der amerikanische Physiker Clarence Zener haben diese Fragestellung bereits 1932 in einem allgemeineren Kontext untersucht.

Dabei fanden sie heraus, dass das Teilchen, unabhängig von seiner Ausgangslage, das Töpfchen durch Tunneln wechselt, vorausgesetzt, die Umkehr des Energieunterschiedes vollzieht sich langsam genug. Im Gegensatz zu klassischen Flüssigkeiten, die unabhängig von ihrer Ausgangslage stets in das tiefere Töpfchen fließen würden, endet ein Quantenteilchen, das seine Wanderung im höher liegenden Töpfchen beginnt, wieder im höheren – ursprünglich gegenüberliegenden – Töpfchen.

Physiker um Prof. Immanuel Bloch (Lehrstuhl für Experimentalphysik an der Ludwig-Maximilians-Universität München und Direktor am Max-Planck-Institut für Quantenoptik) haben nun in Zusammenarbeit mit Theoretikern des Weizmann Institute of Science (Rehovot, Israel) entsprechende Untersuchungen an einem eindimensionalen System aus vielen Quantenteilchen durchgeführt.

Dabei machten sie die Beobachtung, dass aufgrund der Wechselwirkungen zwischen den Atomen das Tunneln dramatisch beeinflusst werden kann und, im Gegensatz zu unserer Intuition, ein langsameres, kontrolliertes Ändern der Parameter zu einem Zusammenbrechen des Tunnelns führt (Nature Physics, AOP, 17.10.2010, DOI: 10.1038/NPHYS1801).

In ihren Experimenten kühlen die Wissenschaftler eine kleine Wolke von „bosonischen“ Rubidiumatomen auf nur wenige Nanokelvin über dem absoluten Nullpunkt, etwa minus 273 Grad Celsius, ab. Bei so niedrigen Temperaturen versammeln sich die Atome in einem einzigen Quantenzustand und bilden einen neuartigen Phasenzustand, der auch als Bose-Einstein-Kondensat bezeichnet wird. Dieses ultrakalte Quantengas wird anschließend in ein sogenanntes „optisches Gitter“ geladen: durch die Interferenz von zwei zueinander senkrechten Paaren gegenläufiger Laserstrahlen entsteht eine „Kristallstruktur“ von abwechselnd hellen und dunklen Bereichen. Die Wechselwirkung zwischen dem Laserlicht und den Rubidiumatomen sorgt dafür, dass sich diese gemäß der Intensitätsverteilung des Lichtes in einem Gitter von langgestreckten Quantengasen mit je bis zu einhundert Teilchen anordnen.

Nun fügen die Wissenschaftler dem Lichtkristall entlang einer Richtung ein weiteres optisches Gitter mit gerade dem halben Gitterabstand hinzu. Damit lassen sich jetzt die praktisch eindimensionalen Potentialröhren, in denen die Atome gefangen sind, in Röhrenpaare aufspalten. Die völlige Kontrolle über die relative Phase der neuen Stehwelle aus Laserlicht gegenüber dem ursprünglichen Gitter ermöglicht es den Forschern, sowohl jeweils nur eines der beiden Röhrchen eines Paares mit Atomen zu füllen, als auch den Energieunterschied zwischen den Potentialröhrchen in Echtzeit einzustellen. Somit ist es möglich, den Transport zwischen den Röhrchen bei der Umkehr der Energiedifferenz – einem sogenannten „Landau-Zener Sweep“ – zu untersuchen. Die Wissenschaftler interessiert dabei insbesondere die Frage, inwiefern die Wechselwirkung zwischen den Teilchen und die eindimensionale Geometrie des Quantengases die ursprünglich von Landau und Zener gefundenen Resultate verändert.

Schon in dem vermeintlich einfachen Fall, in dem die Atome in dem Röhrchen mit der niedrigeren potentieller Energie starteten, ließen sich deutliche Abweichungen vom Resultat für ein einzelnes Teilchen finden. Zwar ließen sich in ausreichend langsamen Landau-Zener Sweeps alle Atome in das andere Röhrchen transferieren. Die bosonische Natur der Teilchen und die abstoßenden Wechselwirkung führten jedoch zu einer erheblichen Verstärkung dieses Transferprozesses.

Noch deutlicher wird der Unterschied zur Einteilchenphysik, wenn alle Atome in dem Röhrchen mit höherer potentieller Energie starten. Hier zeigte sich, dass niemals alle Atome die anfänglich leere Seite erreichen. Dabei nahm die Transfereffizienz desto stärker ab, je langsamer der Landau-Zener Sweep durchgeführt wurde. Dieses Verhalten ähnelt stark der Erwartung für eine klassische Flüssigkeit, die stets in den am tiefsten gelegenen Topf fließen würde. Bei diesem Vorgang wird die potentielle Energie zunächst kontinuierlich in kinetische Energie umgewandelt und anschließend als Wärme an die Umgebung abgegeben, bis die Flüssigkeit wieder zur Ruhe gekommen ist.

In einem geschlossenen Quantensystem gibt es diesen Energieaustausch mit der Umgebung normalerweise nicht: die Überschussenergie würde im System verbleiben und so die Relaxation des Quantenteilchens in den tiefer gelegenen Potentialtopf verhindern. In einem eindimensionalen Quantengas aus vielen wechselwirkenden Teilchen jedoch sind Anregungen mit beliebig niedriger Energie möglich. In solche internen Anregungen, die aufgrund ihrer Ähnlichkeit zu den Gitterschwingungen in Festkörpern oft auch als „Phononen“ bezeichnet werden, kann die Überschussenergie umgewandelt werden, so dass eine Relaxation in das tiefer liegende Potentialröhrchen erlaubt ist. Im übertragenen Sinne übernehmen diese internen Anregungen den Part einer „inneren Umgebung“, an die die freiwerdende Energie abgegeben werden kann. Dabei findet die Relaxation nur in dem eng begrenzten Zeitraum während des Sweeps statt, in dem die Potentialunterschiede zwischen den Röhren klein sind. Je langsamer dieser Bereich durchlaufen wird, desto größer ist der Anteil der Teilchen des eindimensionalen Quantengases, die am Ende des Prozesses in der tiefer liegenden Röhre zu finden sind.

Mit den beschriebenen Experimenten konnte erstmals ein Landau-Zener-Problem in einem eindimensionalen System aus vielen miteinander wechselwirkenden Quantenteilchen untersucht werden. Die Dynamik solcher Systeme birgt eine Vielzahl offener Fragen und ungelöster Probleme, vor allem in Hinblick auf Relaxationsmechanismen und mögliche Thermalisierung. Darüber hinaus besteht die Möglichkeit, Vielteilchen-Phasenübergänge, an denen sich die Anregungsspektren drastisch verändern, anhand solcher generalisierter Landau-Zener-Experimente zu identifizieren. Die hier aufgeführten Messungen bieten einen tiefen Einblick in die Nicht-Gleichgewichtsphysik gekoppelter eindimensionaler Quantengase und öffnen die Tür für weitere detaillierte Untersuchungen der diesen Systemen innewohnenden schallwellenartigen Anregungen. Stefan Trotzky/Olivia Meyer-Streng

Originalveröffentlichung:
Yu-Ao Chen, Sebastian D. Huber, Stefan Trotzky, Immanuel Bloch und Ehud Altman
Many-body Landau–Zener dynamics in coupled one-dimensional Bose liquids
Nature Physics, AOP, 17.10.2010, DOI: 10.1038/NPHYS1801
Kontakt:
http://www.quantum-munich.de
Dipl.-Phys. Stefan Trotzky
LMU München, Fakultät für Physik
Schellingstr. 4
80799 München
Tel.: +49 89 2180 6133
Fax: +49 89 2180 63851
E-Mail: stefan.trotzky@lmu.de
Prof. Dr. Immanuel Bloch
Lehrstuhl für Experimentalphysik,
LMU München, und
Direktor am Max-Planck-Institut
für Quantenoptik
Hans-Kopfermann-Straße 1
5748 Garching b. München
Tel.: +49 89 32905 138
Fax: +49 89 32905 313
E-Mail: immanuel.bloch@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.quantum-munich.de
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

nachricht Sternenstaub reist häufiger in Meteoriten mit als gedacht
15.08.2017 | Max-Planck-Institut für Chemie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Graduiertenschule HyPerCells entwickelt hocheffiziente Perowskit- Dünnschichtsolarzelle

17.08.2017 | Energie und Elektrotechnik

Forschungsprojekt zu optimierten Oberflächen von Metallpulver-Spritzguss-Werkzeugen

17.08.2017 | Verfahrenstechnologie

Fernerkundung für den Naturschutz

17.08.2017 | Ökologie Umwelt- Naturschutz