Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantentunneln im Kollektiv

18.10.2010
Wissenschaftler des MPQ, der LMU und des Weizmann-Instituts in Israel zeigen, wie das quantenmechanische Tunneln durch eine Barriere durch das Zusammenspiel vieler Teilchen dramatisch beeinflusst werden kann.

Quantensysteme verhalten sich oft anders, als es unsere Intuition und unsere alltäglichen Erfahrungen vermuten lassen. Ein Beispiel dafür ist das sogenannte Landau-Zener Problem aus der Quantenmechanik.

Es beschreibt unter anderem das Tunneln eines Quantenteilchens zwischen zwei Potentialtöpfen, deren anfänglich großer Energieunterschied durch langsames Verschieben der Niveaus allmählich umgekehrt wird. Der russische Physiker Lew Landau und der amerikanische Physiker Clarence Zener haben diese Fragestellung bereits 1932 in einem allgemeineren Kontext untersucht.

Dabei fanden sie heraus, dass das Teilchen, unabhängig von seiner Ausgangslage, das Töpfchen durch Tunneln wechselt, vorausgesetzt, die Umkehr des Energieunterschiedes vollzieht sich langsam genug. Im Gegensatz zu klassischen Flüssigkeiten, die unabhängig von ihrer Ausgangslage stets in das tiefere Töpfchen fließen würden, endet ein Quantenteilchen, das seine Wanderung im höher liegenden Töpfchen beginnt, wieder im höheren – ursprünglich gegenüberliegenden – Töpfchen.

Physiker um Prof. Immanuel Bloch (Lehrstuhl für Experimentalphysik an der Ludwig-Maximilians-Universität München und Direktor am Max-Planck-Institut für Quantenoptik) haben nun in Zusammenarbeit mit Theoretikern des Weizmann Institute of Science (Rehovot, Israel) entsprechende Untersuchungen an einem eindimensionalen System aus vielen Quantenteilchen durchgeführt.

Dabei machten sie die Beobachtung, dass aufgrund der Wechselwirkungen zwischen den Atomen das Tunneln dramatisch beeinflusst werden kann und, im Gegensatz zu unserer Intuition, ein langsameres, kontrolliertes Ändern der Parameter zu einem Zusammenbrechen des Tunnelns führt (Nature Physics, AOP, 17.10.2010, DOI: 10.1038/NPHYS1801).

In ihren Experimenten kühlen die Wissenschaftler eine kleine Wolke von „bosonischen“ Rubidiumatomen auf nur wenige Nanokelvin über dem absoluten Nullpunkt, etwa minus 273 Grad Celsius, ab. Bei so niedrigen Temperaturen versammeln sich die Atome in einem einzigen Quantenzustand und bilden einen neuartigen Phasenzustand, der auch als Bose-Einstein-Kondensat bezeichnet wird. Dieses ultrakalte Quantengas wird anschließend in ein sogenanntes „optisches Gitter“ geladen: durch die Interferenz von zwei zueinander senkrechten Paaren gegenläufiger Laserstrahlen entsteht eine „Kristallstruktur“ von abwechselnd hellen und dunklen Bereichen. Die Wechselwirkung zwischen dem Laserlicht und den Rubidiumatomen sorgt dafür, dass sich diese gemäß der Intensitätsverteilung des Lichtes in einem Gitter von langgestreckten Quantengasen mit je bis zu einhundert Teilchen anordnen.

Nun fügen die Wissenschaftler dem Lichtkristall entlang einer Richtung ein weiteres optisches Gitter mit gerade dem halben Gitterabstand hinzu. Damit lassen sich jetzt die praktisch eindimensionalen Potentialröhren, in denen die Atome gefangen sind, in Röhrenpaare aufspalten. Die völlige Kontrolle über die relative Phase der neuen Stehwelle aus Laserlicht gegenüber dem ursprünglichen Gitter ermöglicht es den Forschern, sowohl jeweils nur eines der beiden Röhrchen eines Paares mit Atomen zu füllen, als auch den Energieunterschied zwischen den Potentialröhrchen in Echtzeit einzustellen. Somit ist es möglich, den Transport zwischen den Röhrchen bei der Umkehr der Energiedifferenz – einem sogenannten „Landau-Zener Sweep“ – zu untersuchen. Die Wissenschaftler interessiert dabei insbesondere die Frage, inwiefern die Wechselwirkung zwischen den Teilchen und die eindimensionale Geometrie des Quantengases die ursprünglich von Landau und Zener gefundenen Resultate verändert.

Schon in dem vermeintlich einfachen Fall, in dem die Atome in dem Röhrchen mit der niedrigeren potentieller Energie starteten, ließen sich deutliche Abweichungen vom Resultat für ein einzelnes Teilchen finden. Zwar ließen sich in ausreichend langsamen Landau-Zener Sweeps alle Atome in das andere Röhrchen transferieren. Die bosonische Natur der Teilchen und die abstoßenden Wechselwirkung führten jedoch zu einer erheblichen Verstärkung dieses Transferprozesses.

Noch deutlicher wird der Unterschied zur Einteilchenphysik, wenn alle Atome in dem Röhrchen mit höherer potentieller Energie starten. Hier zeigte sich, dass niemals alle Atome die anfänglich leere Seite erreichen. Dabei nahm die Transfereffizienz desto stärker ab, je langsamer der Landau-Zener Sweep durchgeführt wurde. Dieses Verhalten ähnelt stark der Erwartung für eine klassische Flüssigkeit, die stets in den am tiefsten gelegenen Topf fließen würde. Bei diesem Vorgang wird die potentielle Energie zunächst kontinuierlich in kinetische Energie umgewandelt und anschließend als Wärme an die Umgebung abgegeben, bis die Flüssigkeit wieder zur Ruhe gekommen ist.

In einem geschlossenen Quantensystem gibt es diesen Energieaustausch mit der Umgebung normalerweise nicht: die Überschussenergie würde im System verbleiben und so die Relaxation des Quantenteilchens in den tiefer gelegenen Potentialtopf verhindern. In einem eindimensionalen Quantengas aus vielen wechselwirkenden Teilchen jedoch sind Anregungen mit beliebig niedriger Energie möglich. In solche internen Anregungen, die aufgrund ihrer Ähnlichkeit zu den Gitterschwingungen in Festkörpern oft auch als „Phononen“ bezeichnet werden, kann die Überschussenergie umgewandelt werden, so dass eine Relaxation in das tiefer liegende Potentialröhrchen erlaubt ist. Im übertragenen Sinne übernehmen diese internen Anregungen den Part einer „inneren Umgebung“, an die die freiwerdende Energie abgegeben werden kann. Dabei findet die Relaxation nur in dem eng begrenzten Zeitraum während des Sweeps statt, in dem die Potentialunterschiede zwischen den Röhren klein sind. Je langsamer dieser Bereich durchlaufen wird, desto größer ist der Anteil der Teilchen des eindimensionalen Quantengases, die am Ende des Prozesses in der tiefer liegenden Röhre zu finden sind.

Mit den beschriebenen Experimenten konnte erstmals ein Landau-Zener-Problem in einem eindimensionalen System aus vielen miteinander wechselwirkenden Quantenteilchen untersucht werden. Die Dynamik solcher Systeme birgt eine Vielzahl offener Fragen und ungelöster Probleme, vor allem in Hinblick auf Relaxationsmechanismen und mögliche Thermalisierung. Darüber hinaus besteht die Möglichkeit, Vielteilchen-Phasenübergänge, an denen sich die Anregungsspektren drastisch verändern, anhand solcher generalisierter Landau-Zener-Experimente zu identifizieren. Die hier aufgeführten Messungen bieten einen tiefen Einblick in die Nicht-Gleichgewichtsphysik gekoppelter eindimensionaler Quantengase und öffnen die Tür für weitere detaillierte Untersuchungen der diesen Systemen innewohnenden schallwellenartigen Anregungen. Stefan Trotzky/Olivia Meyer-Streng

Originalveröffentlichung:
Yu-Ao Chen, Sebastian D. Huber, Stefan Trotzky, Immanuel Bloch und Ehud Altman
Many-body Landau–Zener dynamics in coupled one-dimensional Bose liquids
Nature Physics, AOP, 17.10.2010, DOI: 10.1038/NPHYS1801
Kontakt:
http://www.quantum-munich.de
Dipl.-Phys. Stefan Trotzky
LMU München, Fakultät für Physik
Schellingstr. 4
80799 München
Tel.: +49 89 2180 6133
Fax: +49 89 2180 63851
E-Mail: stefan.trotzky@lmu.de
Prof. Dr. Immanuel Bloch
Lehrstuhl für Experimentalphysik,
LMU München, und
Direktor am Max-Planck-Institut
für Quantenoptik
Hans-Kopfermann-Straße 1
5748 Garching b. München
Tel.: +49 89 32905 138
Fax: +49 89 32905 313
E-Mail: immanuel.bloch@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.quantum-munich.de
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Perspektiven durch gespiegelte Systeme
05.12.2016 | Friedrich-Schiller-Universität Jena

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten