Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantentrio bleibt sich in der Ferne treu

13.05.2014

Mit den Efimov-Zuständen wiesen Innsbrucker Quantenphysiker um Rudolf Grimm vor einigen Jahren ein bis dahin nur theoretisch bekanntes Phänomen erstmals im Experiment nach. Nun haben sie in einem ultrakalten Quantengas auch einen zweiten solchen Bindungszustand von drei Teilchen gemessen und damit den experimentellen Nachweis für die Periodizität dieses universellen physikalischen Phänomens erbracht.

Vor acht Jahren haben Wissenschaftler um Rudolf Grimm in einem ultrakalten Quantengas weltweit erstmals einen sogenannten Efimov-Zustand beobachtet. Diesen Dreikörperzustand hatte der Russe Vitali Efimov Anfang der 1970er-Jahre theoretisch vorhergesagt.


Der Dreikörper-Quantenzustand wiederholt sich, wenn die Teilchen um den Faktor 22,7 von einander entfernt werden. IQOQI/Harald Ritsch

Unter Ausnutzung der quantenmechanischen Eigenschaften vereinen sich dabei drei Teilchen zu einem Objekt, obwohl sie paarweise zu keiner Verbindung imstande sind. Noch erstaunlicher: Vergrößert man die Entfernung zwischen den Teilchen jeweils um den Faktor 22,7, nehmen die Teilchen laut Efimov erneut solche Zustände ein. Bis heute ist es aber nicht gelungen, die Periodizität dieses Phänomens und die Richtigkeit des von Efimov berechneten Faktors auch tatsächlich messtechnisch zu überprüfen.

„Es hat viele Hinweise gegeben, dass die Teilchen immer wieder solche Dreikörperzustände einnehmen, wenn man die Entfernung um eben diesen Faktor vergrößert“, sagt Rudolf Grimm vom Institut für Experimentalphysik der Universität Innsbruck und dem Institut für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften. „Der Nachweis war messtechnisch eine große Herausforderung, uns ist er nun aber gelungen.“

In großem Abstand aneinander gebunden

Ultrakalte Quantengase eignen sich hervorragend, um Teilchenphänomene experimentell nachzuweisen, weil sich die Wechselwirkung zwischen den Atomen über ein Magnetfeld sehr gut kontrollieren lässt. Mit dem aktuellen Experiment ging aber auch die Forschungsgruppe um Rudolf Grimm an die Grenzen des Möglichen, weil der Abstand zwischen den Teilchen für die Beobachtung des zweiten Efimov-Zustands auf einen Mikrometer vergrößert werden musste. „Das entspricht dem 20.000-fachen des Radius eines Wasserstoffatoms“, erklärt Grimm.

„Im Vergleich zu einem Molekül ist das ein riesiges Gebilde.“ Entsprechend genau mussten die Physiker im Labor auch arbeiten. Die große Erfahrung mit ultrakalten Quantengasen und ihre hohe technische Kompetenz hat den Innsbrucker Physikern dabei geholfen. Der zweite Efimov-Zustand wurde im 21-fachen Abstand zum ersten Efimov-Zustand gefunden, bei einer Fehlertoleranz von 1,3. „Die kleine Abweichung ist vermutlich auf die Physik jenseits des idealisierten Efimov-Zustands zurückzuführen. Das ist wiederum ein spannendes Thema“, erklärt Rudolf Grimm.

Neues Forschungsfeld

Das Interesse der Wissenschaft an diesem physikalischen Phänomen ist deshalb groß, weil es universellen Charakter hat. So gilt das Gesetz in der Kernphysik, wo die so genannte starke Wechselwirkung für die Bindung der Teilchen in den Atomkernen verantwortlich ist, ebenso wie bei molekularen Verbindungen, die auf elektromagnetischen Kräften beruhen.

„Die Wechselwirkungen zwischen zwei Teilchen und jene zwischen sehr vielen Teilchen sind sehr gut untersucht“, sagt Grimm. „Das Zusammenwirken weniger Teilchen zeigt aber neue Phänomene, die wir erst noch verstehen lernen müssen. Die Efimov-Zustände sind ein Beispiel dafür.“ Die gemeinsame Arbeit des Teams um Rudolf Grimm mit einem britischen Theoretiker wurde vom österreichischen Wissenschaftsfonds FWF finanziell unterstützt. Die Ergebnisse sind nun in der Fachzeitschrift Physical Review Letters veröffentlicht worden.


Publikation: Observation of the Second Triatomic Resonance in Efimov's Scenario. Bo Huang, Leonid A. Sidorenkov, Rudolf Grimm, Jeremy M. Hutson. Phys. Rev. Lett. 112, 190401 (2014) DOI: http://dx.doi.org/10.1103/PhysRevLett.112.190401, arXiv: http://arxiv.org/abs/1402.6161

Rückfragehinweis:

Univ.-Prof. Dr. Rudolf Grimm
Institut für Experimentalphysik
Universität Innsbruck
Tel.: +43 512 507-52410
E-Mail: rudolf.grimm@uibk.ac.at
Web: http://www.ultracold.at

Dr. Christian Flatz
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Tel.: +43 512 507 32022
Mobil: +43 676 872532022
E-Mail: christian.flatz@uibk.ac.at

Weitere Informationen:

http://physics.aps.org/articles/v7/51 - Physics Viewpoint: Giant Efimov States Now Observed
http://www.ultracold.at - Ultracold Atoms and Quantum Gases

Dr. Christian Flatz | Universität Innsbruck

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten