Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenteleportation: Fliegende Quantenbits auf Knopfdruck übertragen

15.08.2013
Hybridtechnik ermöglicht die Übertragung von photonischen Qubits mit großer Zuverlässigkeit

Mithilfe quantenmechanischer Verschränkung räumlich getrennter Lichtfelder ist es Wissenschaftlern aus Tokio und Mainz gelungen, photonische Quantenbits außerordentlich zuverlässig zu teleportieren.


Deterministische Quantenteleportation eines photonischen Quantenbits. Jedes Qubit, das von links in den Teleporter fliegt, verlässt den Teleporter rechts mit einem Qualitätsverlust von nur etwa 20 Prozent – ein Wert, der klassisch, d.h. ohne Verschränkung, unerreichbar ist.
Quelle: University of Tokyo

Rund 15 Jahre nach den ersten Versuchen auf dem Gebiet der optischen Teleportation ist damit ein entscheidender Durchbruch gelungen. Der Erfolg des in Tokio durchgeführten Experiments beruht auf einer Hybridtechnik, bei der zwei konzeptionell verschiedene, bisher unvereinbare Ansätze verknüpft werden.

„Diskrete, digitale optische Quanteninformation kann dabei kontinuierlich und damit sozusagen auf Knopfdruck übertragen werden“, erklärt Univ.-Prof. Dr. Peter van Loock von der Johannes Gutenberg-Universität Mainz (JGU). Van Loock hat als Physik-Theoretiker die experimentellen Physiker um Akira Furusawa von der Universität Tokio beraten, wie sie den Teleportationsversuch am effizientesten durchführen und eine erfolgreiche Quantenteleportation letztlich auch verifizieren können. Die Forschungsarbeiten wurden in dem renommierten Fachmagazin Nature am 15. August 2013 veröffentlicht.

Die Quantenteleportation ermöglicht den Transfer von beliebigen Quantenzuständen von einem Sender, als Alice bezeichnet, zu einem räumlich entfernten Empfänger, genannt Bob. Voraussetzung ist, dass sich Alice und Bob zunächst einen verschränkten Quantenzustand, z.B. in Form von verschränkten Photonen, über die Distanz teilen. Die Quantenteleportation ist von fundamentaler Bedeutung für die Verarbeitung von Quanteninformation (Quantencomputing) und die Quantenkommunikation. Insbesondere für die Quantenkommunikation gelten Photonen als optimale Informationsträger, da sie eine Signalübertragung mit Lichtgeschwindigkeit ermöglichen. Mit einem Photon kann man ein Quantenbit oder Qubit darstellen – analog zu einem Bit in der klassischen Informationsverarbeitung. Man spricht dann von „fliegenden Quantenbits“.

Erste Versuche zur Teleportation von einzelnen Photonen, die auch als Lichtteilchen bezeichnet werden, gehen auf den Wiener Physiker Anton Zeilinger zurück. In der Zwischenzeit wurden verschiedene Experimente durchgeführt, allerdings stieß die Teleportation eines photonischen Quantenbits mithilfe der herkömmlichen Methoden aufgrund von experimentellen Unzulänglichkeiten und grundsätzlichen Prinzipien an Grenzen.

Der Schlüssel für das Experiment in Tokio ist eine Hybridtechnik. Mit ihrer Hilfe ist es gelungen, experimentell eine vollkommen deterministische Quantenteleportation von photonischen Qubits zu erzielen, bei der die Teleportation mit außerordentlich hoher Zuverlässigkeit erfolgt. Die Genauigkeit der Übertragung liegt bei 79 bis 82 Prozent für vier unterschiedliche Qubits. Außerdem konnten die Qubits selbst bei einem geringen Grad der Verschränkung wesentlich effizienter teleportiert werden als in früheren Experimenten.

Verschränkung-on-Demand durch Lichtquetschung

Der Begriff der Verschränkung geht auf Erwin Schrödinger zurück und bezeichnet den Befund, dass zwei Quantensysteme, beispielsweise zwei Lichtteilchen, einen gemeinsamen Zustand einnehmen und in ihrem Verhalten auf stärkere Weise voneinander abhängen als es klassisch möglich ist. Bei dem Tokioter Experiment wurde durch die Verschränkung von vielen Photonen mit vielen Photonen eine kontinuierliche Verschränkung erzeugt, bei der nicht nur einzelne wenige Lichtteilchen, sondern die kompletten Amplituden und Phasen zweier Lichtfelder miteinander quantenkorreliert sind. Bisherige Experimente hatten dagegen jeweils nur ein einzelnes Photon mit einem anderen einzelnen Photon verschränkt – eine weniger effiziente Lösung. „Die Verschränkung von Photonen hat in dem Tokio-Experiment sehr gut funktioniert – praktisch auf Knopfdruck, sobald der Laser eingeschaltet wurde“, beschreibt van Loock, Professor für Theorie der Quantenoptik und Quanteninformation, den Versuch. Erreicht wurde diese kontinuierliche Verschränkung durch sogenanntes gequetschtes Licht, das im Phasenraum des Lichtfeldes die Form einer Ellipse annimmt. Ist die Verschränkung erzeugt, kann ein drittes Lichtfeld beim Sender angeheftet werden. Von dort können dann im Prinzip beliebige und beliebig viele Zustände an den Empfänger übertragen werden. „In unserem Experiment waren es genau vier ausreichend repräsentative Testzustände, die unter Benutzung der Verschränkung von Alice übermittelt wurden und bei Bob entsprechende Zustände erzeugt haben. Dank der kontinuierlichen Verschränkung ist es möglich, dass die photonischen Qubits deterministisch, also bei jedem Versuch, zu Bob übertragen werden“, ergänzt van Loock.

Frühere Experimente zur optischen Teleportation waren unterschiedlich angelegt und bis heute inkompatibel. Von physiktheoretischer Seite wurde zwar angenommen, dass die beiden unterschiedlichen Ansätze, die diskrete und die kontinuierliche Welt, zu verbinden sind. Dass es nun im Experiment mit der Hybridtechnik tatsächlich gelungen ist, stellt einen technologischen Durchbruch dar. „Jetzt nähern sich die beiden Welten an“, so van Loock.

Veröffentlichung:
Shuntaro Takeda et al.
Deterministic quantum teleportation of photonic quantum bits by a hybrid technique
Nature, 15. August 2013
DOI: 10.1038/nature12366
Fotos:
http://www.uni-mainz.de/bilder_presse/08_physik_quantum_teleportation_01.jpg
Optischer Aufbau des Teleportationsexperiments an der Universität Tokio. Laserquellen und nichtlineare optische Prozesse liefern das Quantenbit und die notwendige Verschränkung. Etliche Spiegel und Strahlteiler ermöglichen es, eine komplette Teleportation durchzuführen.

Quelle: University of Tokyo

http://www.uni-mainz.de/bilder_presse/08_physik_quantum_teleportation_02.jpg
Deterministische Quantenteleportation eines photonischen Quantenbits. Jedes Qubit, das von links in den Teleporter fliegt, verlässt den Teleporter rechts mit einem Qualitätsverlust von nur etwa 20 Prozent – ein Wert, der klassisch, d.h. ohne Verschränkung, unerreichbar ist.

Quelle: University of Tokyo

Weitere Informationen:
Univ.-Prof. Dr. Peter van Loock
Quanten-, Atom- und Neutronenphysik (QUANTUM)
Institut für Physik
Johannes Gutenberg-Universität Mainz (JGU)
D 55099 Mainz
Tel. +49 6131 39-23628
Fax +49 6131 39-25179
E-Mail: loock@uni-mainz.de
http://www.quantum.physik.uni-mainz.de/
Weitere Links:
http://www.nature.com/nature/journal/v500/n7462/full/nature12366.html
http://www.uni-mainz.de/universitaet/1451_DEU_HTML.php
http://www.alice.t.u-tokyo.ac.jp/index-e.html
(Furusawa Laboratory am Department of Applied Physics, University of Tokyo)

Petra Giegerich | idw
Weitere Informationen:
http://www.quantum.physik.uni-mainz.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften