Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenteleportation: Fliegende Quantenbits auf Knopfdruck übertragen

15.08.2013
Hybridtechnik ermöglicht die Übertragung von photonischen Qubits mit großer Zuverlässigkeit

Mithilfe quantenmechanischer Verschränkung räumlich getrennter Lichtfelder ist es Wissenschaftlern aus Tokio und Mainz gelungen, photonische Quantenbits außerordentlich zuverlässig zu teleportieren.


Deterministische Quantenteleportation eines photonischen Quantenbits. Jedes Qubit, das von links in den Teleporter fliegt, verlässt den Teleporter rechts mit einem Qualitätsverlust von nur etwa 20 Prozent – ein Wert, der klassisch, d.h. ohne Verschränkung, unerreichbar ist.
Quelle: University of Tokyo

Rund 15 Jahre nach den ersten Versuchen auf dem Gebiet der optischen Teleportation ist damit ein entscheidender Durchbruch gelungen. Der Erfolg des in Tokio durchgeführten Experiments beruht auf einer Hybridtechnik, bei der zwei konzeptionell verschiedene, bisher unvereinbare Ansätze verknüpft werden.

„Diskrete, digitale optische Quanteninformation kann dabei kontinuierlich und damit sozusagen auf Knopfdruck übertragen werden“, erklärt Univ.-Prof. Dr. Peter van Loock von der Johannes Gutenberg-Universität Mainz (JGU). Van Loock hat als Physik-Theoretiker die experimentellen Physiker um Akira Furusawa von der Universität Tokio beraten, wie sie den Teleportationsversuch am effizientesten durchführen und eine erfolgreiche Quantenteleportation letztlich auch verifizieren können. Die Forschungsarbeiten wurden in dem renommierten Fachmagazin Nature am 15. August 2013 veröffentlicht.

Die Quantenteleportation ermöglicht den Transfer von beliebigen Quantenzuständen von einem Sender, als Alice bezeichnet, zu einem räumlich entfernten Empfänger, genannt Bob. Voraussetzung ist, dass sich Alice und Bob zunächst einen verschränkten Quantenzustand, z.B. in Form von verschränkten Photonen, über die Distanz teilen. Die Quantenteleportation ist von fundamentaler Bedeutung für die Verarbeitung von Quanteninformation (Quantencomputing) und die Quantenkommunikation. Insbesondere für die Quantenkommunikation gelten Photonen als optimale Informationsträger, da sie eine Signalübertragung mit Lichtgeschwindigkeit ermöglichen. Mit einem Photon kann man ein Quantenbit oder Qubit darstellen – analog zu einem Bit in der klassischen Informationsverarbeitung. Man spricht dann von „fliegenden Quantenbits“.

Erste Versuche zur Teleportation von einzelnen Photonen, die auch als Lichtteilchen bezeichnet werden, gehen auf den Wiener Physiker Anton Zeilinger zurück. In der Zwischenzeit wurden verschiedene Experimente durchgeführt, allerdings stieß die Teleportation eines photonischen Quantenbits mithilfe der herkömmlichen Methoden aufgrund von experimentellen Unzulänglichkeiten und grundsätzlichen Prinzipien an Grenzen.

Der Schlüssel für das Experiment in Tokio ist eine Hybridtechnik. Mit ihrer Hilfe ist es gelungen, experimentell eine vollkommen deterministische Quantenteleportation von photonischen Qubits zu erzielen, bei der die Teleportation mit außerordentlich hoher Zuverlässigkeit erfolgt. Die Genauigkeit der Übertragung liegt bei 79 bis 82 Prozent für vier unterschiedliche Qubits. Außerdem konnten die Qubits selbst bei einem geringen Grad der Verschränkung wesentlich effizienter teleportiert werden als in früheren Experimenten.

Verschränkung-on-Demand durch Lichtquetschung

Der Begriff der Verschränkung geht auf Erwin Schrödinger zurück und bezeichnet den Befund, dass zwei Quantensysteme, beispielsweise zwei Lichtteilchen, einen gemeinsamen Zustand einnehmen und in ihrem Verhalten auf stärkere Weise voneinander abhängen als es klassisch möglich ist. Bei dem Tokioter Experiment wurde durch die Verschränkung von vielen Photonen mit vielen Photonen eine kontinuierliche Verschränkung erzeugt, bei der nicht nur einzelne wenige Lichtteilchen, sondern die kompletten Amplituden und Phasen zweier Lichtfelder miteinander quantenkorreliert sind. Bisherige Experimente hatten dagegen jeweils nur ein einzelnes Photon mit einem anderen einzelnen Photon verschränkt – eine weniger effiziente Lösung. „Die Verschränkung von Photonen hat in dem Tokio-Experiment sehr gut funktioniert – praktisch auf Knopfdruck, sobald der Laser eingeschaltet wurde“, beschreibt van Loock, Professor für Theorie der Quantenoptik und Quanteninformation, den Versuch. Erreicht wurde diese kontinuierliche Verschränkung durch sogenanntes gequetschtes Licht, das im Phasenraum des Lichtfeldes die Form einer Ellipse annimmt. Ist die Verschränkung erzeugt, kann ein drittes Lichtfeld beim Sender angeheftet werden. Von dort können dann im Prinzip beliebige und beliebig viele Zustände an den Empfänger übertragen werden. „In unserem Experiment waren es genau vier ausreichend repräsentative Testzustände, die unter Benutzung der Verschränkung von Alice übermittelt wurden und bei Bob entsprechende Zustände erzeugt haben. Dank der kontinuierlichen Verschränkung ist es möglich, dass die photonischen Qubits deterministisch, also bei jedem Versuch, zu Bob übertragen werden“, ergänzt van Loock.

Frühere Experimente zur optischen Teleportation waren unterschiedlich angelegt und bis heute inkompatibel. Von physiktheoretischer Seite wurde zwar angenommen, dass die beiden unterschiedlichen Ansätze, die diskrete und die kontinuierliche Welt, zu verbinden sind. Dass es nun im Experiment mit der Hybridtechnik tatsächlich gelungen ist, stellt einen technologischen Durchbruch dar. „Jetzt nähern sich die beiden Welten an“, so van Loock.

Veröffentlichung:
Shuntaro Takeda et al.
Deterministic quantum teleportation of photonic quantum bits by a hybrid technique
Nature, 15. August 2013
DOI: 10.1038/nature12366
Fotos:
http://www.uni-mainz.de/bilder_presse/08_physik_quantum_teleportation_01.jpg
Optischer Aufbau des Teleportationsexperiments an der Universität Tokio. Laserquellen und nichtlineare optische Prozesse liefern das Quantenbit und die notwendige Verschränkung. Etliche Spiegel und Strahlteiler ermöglichen es, eine komplette Teleportation durchzuführen.

Quelle: University of Tokyo

http://www.uni-mainz.de/bilder_presse/08_physik_quantum_teleportation_02.jpg
Deterministische Quantenteleportation eines photonischen Quantenbits. Jedes Qubit, das von links in den Teleporter fliegt, verlässt den Teleporter rechts mit einem Qualitätsverlust von nur etwa 20 Prozent – ein Wert, der klassisch, d.h. ohne Verschränkung, unerreichbar ist.

Quelle: University of Tokyo

Weitere Informationen:
Univ.-Prof. Dr. Peter van Loock
Quanten-, Atom- und Neutronenphysik (QUANTUM)
Institut für Physik
Johannes Gutenberg-Universität Mainz (JGU)
D 55099 Mainz
Tel. +49 6131 39-23628
Fax +49 6131 39-25179
E-Mail: loock@uni-mainz.de
http://www.quantum.physik.uni-mainz.de/
Weitere Links:
http://www.nature.com/nature/journal/v500/n7462/full/nature12366.html
http://www.uni-mainz.de/universitaet/1451_DEU_HTML.php
http://www.alice.t.u-tokyo.ac.jp/index-e.html
(Furusawa Laboratory am Department of Applied Physics, University of Tokyo)

Petra Giegerich | idw
Weitere Informationen:
http://www.quantum.physik.uni-mainz.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie