Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenteilchen auf der Schaukel: Bonner Physiker kontrollieren die Eigenschwingung von Atomen

09.12.2009
Mit einzelnen Atomen zu arbeiten ist mitunter schlimmer als Flöhe hüten - sie lassen sich nur mit speziellen Techniken kontrollieren.

Physiker der Universität Bonn haben nun eine neue Methode ersonnen, Atomen ihren Willen aufzuzwingen: Ihnen ist es gelungen, die Eigenschwingung der kleinen Teilchen (ihre so genannte Wellenfunktion) präzise zu steuern.

Der Bonner Ansatz öffnet Forschern aus verschiedenen Bereichen der Physik neue Türen. Die Ergebnisse sind nun in den Physical Review Letters erschienen (doi: 10.1103/PhysRevLett.103.233001).

Atome haben eine Eigenschaft, die die Mitarbeiter viel beschäftigter Chefs nur zu gut kennen: Sie können sich theoretisch an vielen Orten gleichzeitig aufhalten, an jedem aber nur mit einer gewissen Wahrscheinlichkeit. Mit welcher Wahrscheinlichkeit man sie wo findet, beschreibt ihre Wellenfunktion.

Es war bisher nur mit Einschränkungen möglich, die Wellenfunktion eines einzelnen Atoms zu kontrollieren. Den Forschern vom Bonner Institut für Angewandte Physik um Professor Dr. Dieter Meschede ist nun aber genau das gelungen. Sie arbeiteten dabei mit einzelnen Caesium-Atomen, die sie mit einer Art Pinzette aus Licht festhielten.

Man kann sich so ein Caesiumatom als ein Kind vorstellen, das auf einer Schaukel sitzt. Die Wellenfunktion beschreibt, wie sehr die Schaukel hin- und herschwingt. Um das Kind höher schwingen zu lassen, versetzt die Mama der Schaukel einfach einen Schubs. Je stärker dieser Schubs, desto größer die Auslenkung: Die Wellenfunktion der Schaukel ändert sich.

In der Welt der Atome ist das nicht so einfach. Das liegt an den Quanteneffekten, die in der Mikrowelt zum Tragen kommen und der atomaren Wellenfunktion somit nur festgelegte Profile erlauben. So muss der Schubs genau die passende Stärke haben, damit er etwas bewirkt. Ist er zu klein oder zu groß, ändert sich an der Schaukelschwingung gar nichts. Es gibt aber noch eine zweite Einschränkung: Die Wellenfunktionen vor und nach dem Schubs müssen eine gewisse Ähnlichkeit aufweisen - Physiker sprechen von "Überlappung".

"Wir haben nun unser Atom mit Mikrowellenstrahlung angeregt, ihm also einen Schubs versetzt", erklärt der Bonner Physiker Dr. Artur Widera. "Mikrowellen lassen sich sehr gut kontrollieren. Wir konnten die zugeführte Energiemenge daher extrem präzise einstellen."

Normalerweise hätte der Schubs dieser Strahlung nicht ausgereicht, um die Bewegung des Caesiums zu verändern. Die Forscher haben nun aber gewissermaßen den Aufhängepunkt der Atomschaukel um wenige Millionstel Millimeter im Raum verschoben. "Dadurch konnten wir den Wellenfunktionsüberlapp genau so einstellen, dass der Mikrowellen-Schubs doch zu einer Änderung der Schaukelbewegung führte."

"Wir können so erstmals die Wellenfunktion von Atomen mit hoher Präzision ändern", sagt Wideras Kollege Leonid Förster. "Damit können wir in der Schaukelbewegung der Atome beispielsweise Informationen speichern. Außerdem ist es denkbar, die Bewegung mit dieser Methode komplett zu stoppen. So ließen sich Atome bis zu ihrem Grundzustand nahe am absoluten Nullpunkt kühlen."

Kontakt:
Dr. Artur Widera
Institut für Angewandte Physik der Universität Bonn
Telefon: 0228/73-3471 oder -3477
E-Mail: widera@uni-bonn.de
Website: http://agmeschede.iap.uni-bonn.de/
Leonid Förster
Telefon: 0228/73-6580
E-Mail: foerster@iap.uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://agmeschede.iap.uni-bonn.de/
http://uni-bonn.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Hochspannung für den Teilchenbeschleuniger der Zukunft
24.05.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten