Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenteilchen im Synchrontanz

17.05.2017

Quantensysteme schwingen genauso wie klassische Pendel nach kurzer Zeit im Takt


Wie von Geisterhand können scheinbar unabhängige Pendeluhren sich zu einem gleichzeitigem, synchronen Ticken zusammenfinden. Das Phänomen der „selbstorganisierten Synchronisation“ kommt oft in Natur und Technik vor und ist ein Kernforschungsgebiet von Marc Timmes Team am Max-Planck-Institut für Dynamik und Selbstorganisation. Die Göttinger sind Teil einer deutsch-italienischen Kollaboration, die nun in „Nature Communications“ eine verblüffende Entdeckung veröffentlicht hat: Auch Quantensysteme können sich selbstorganisiert synchronisieren, ohne Steuerung von außen. Diese Synchronisation manifestiert sich dann in der merkwürdigsten Eigenschaft der Quantenwelt – der Verschränkung.


Mehrere Pendeluhren können sich wie von Geisterhand auf eine Schwingungsfrequenz synchronisieren, wenn sie eine gemeinsame Aufhängung haben. Dieses Phänomen beobachtete Christiaan Huygens 1665 zum ersten Mal.

© Henrique M. Oliveira & Luís V. Melo


Links schwingen Pendel nicht synchronisiert, rechts haben sie sich von selbst zu einem synchronisierten Schwingen organisiert. Bei Quantensystemen kann eine solche klassische Synchronisation der „rauchende Colt“ für Verschränkung sein. Diese Vorhersage der deutsch-italienischen Kollaboration um Marc Timme und Dirk Witthaut lässt sich im Labor überprüfen.

© Forschungszentrum Jülich

Mehrere Pendeluhren können sich wie von Geisterhand auf eine Schwingungsfrequenz synchronisieren, wenn sie eine gemeinsame Aufhängung haben. Dieses Phänomen beobachtete Christiaan Huygens 1665 zum ersten Mal.
Bild vergrößern

Mehrere Pendeluhren können sich wie von Geisterhand auf eine Schwingungsfrequenz synchronisieren, wenn sie eine gemeinsame Aufhängung haben. Dieses Phänomen beobachtete Christiaan Huygens 1665 zum ersten Mal.


© Henrique M. Oliveira & Luís V. Melo

Im Jahr 1665 arbeitete der niederländische Forscher Christiaan Huygens (1629-1695) an einer neuartigen Schiffsuhr. Damals waren Pendeluhren Stand der Technik, und ein speziell geformtes Pendel sollte weniger empfindlich auf das Schwanken der Schiffe reagieren. Möglichst präzise Schiffsuhren waren der Schlüssel zu einer genauen Bestimmung des Längengrads. Huygens hatte zur Sicherheit zwei seiner Pendeluhren in ein schweres Gehäuse eingebaut, das so aufgehängt war, dass es die Schaukelei des Schiffs weitgehend ausgleichen sollte. An dieser aufwendigen Konstruktion beobachtete er nun ein verblüffendes Phänomen: Obwohl die Uhren unabhängig voneinander liefen und keinem äußeren Einfluss unterlagen, schwangen ihre Pendel spätestens eine halbe Stunde nach jedem Neustart exakt synchron.

Huygens vermutete damals schon, dass die beiden Pendel sich über winzig kleine, „nicht wahrnehmbare Bewegungen“ in der gemeinsamen Aufhängung der beiden Uhren synchronisierten. Damit lag er richtig, wie Physiker später für solche schwingenden Systeme zeigen konnten. „Auch an mehr als zwei solcher Uhren oder anderen schwingenden Objekten kann man beobachten, dass sie sich ohne äußeren Einfluss gegenseitig synchronisieren können“, erklärt Marc Timme, Theoretischer Physiker am Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen. Der Professor leitet dort eine Forschungsgruppe, die sich mit der Dynamik von Netzwerken beschäftigt, zum Beispiel analysiert sie das Verhalten von Stromnetzen.

Eine gemeinsame Aufhängung bringt Pendel in Takt

Die selbstorganisierte Synchronisation von scheinbar unabhängigen Schwingern auf eine Frequenz lässt sich in vielen Systemen in Natur und Technik beobachten. Voraussetzung ist eine oft „versteckte“ Kopplung, zum Beispiel bei Pendeluhren über eine gemeinsame Aufhängung. Wissenschaftler wie Timme sprechen auch von einem Lock-in-Verhalten, das dafür sorgt, dass alle beteiligten Schwinger sich auf exakt eine Frequenz einschaukeln und dann in dieser gefangen bleiben. Tatsächlich funktioniert dies auch bei Kinderschaukeln, die an einem gemeinsamen Balken aufgehängt sind. Stößt man sie aus verschiedenen Anfangspositionen an, dann pendeln sie sich irgendwann auf eine Frequenz ein.

Die Beispiele beschränken sich nicht nur auf mechanische Schwingungen. „Das gibt es auch in vielen verschiedenen biologischen Netzwerken“, erklärt Timme: „Im Gehirn tritt das Phänomen bei der Synchronisation von Nervenimpulsen auf.“ Diese Synchronisation von Hirnstromwellen in bestimmten Arealen scheint wichtig für das Funktionieren unseres Denkorgans zu sein. Sie kann aber auch zu viel bewirken. „Großskalige, also weitreichende Synchronisation von Hirnstromwellen im Gehirn ist charakteristisch für Epilepsie“, sagt Timme.

Quantenteilchen synchronisieren sich ohne äußeren Einfluss

<p>Links schwingen Pendel nicht synchronisiert, rechts haben sie sich von selbst zu einem synchronisierten Schwingen organisiert. Bei Quantensystemen kann eine solche klassische Synchronisation der „rauchende Colt“ für Verschränkung sein. Diese Vorhersage der deutsch-italienischen Kollaboration um Marc Timme und Dirk Witthaut lässt sich im Labor überprüfen.</p>
Bild vergrößern


Links schwingen Pendel nicht synchronisiert, rechts haben sie sich von selbst zu einem synchronisierten Schwingen organisiert. Bei Quantensystemen kann eine solche klassische Synchronisation der „rauchende Colt“ für Verschränkung sein. Diese Vorhersage der deutsch-italienischen Kollaboration um Marc Timme und Dirk Witthaut lässt sich im Labor überprüfen.

© Forschungszentrum Jülich

Alle diese selbstorganisierten Ordnungsphänomene basieren aus Sicht der Physik auf den Grundlagen der klassischen Welt. Doch eine deutsch-italienische Forschungskollaboration entdeckte nun Synchronisation in der Quantenwelt. Initiiert hat diese Kollaboration Marc Timme zusammen mit seinem ehemaligen Postdoktoranden Dirk Witthaut, der inzwischen eine unabhängige Forschungsgruppe am Forschungszentrum Jülich leitet. Die konzeptionell neue Arbeit wurde nun in der renommierten Zeitschrift Nature Communications veröffentlicht. Darin zeigen die Wissenschaftler erstmalig: Isolierte Systeme aus vielen Quantenobjekten wie etwa Atome eines Bose-Einstein-Kondensats, das in einem optischen Gitter gefangen ist, können sich ganz ähnlich wie klassische Systeme der Physik synchronisieren.

In einem Bose-Einstein-Kondensat, dessen experimentelle Umsetzung 2001 mit dem Physik-Nobelpreis gewürdigt wurde, verhalten sich mehrere Atome wie ein einziges Quantenobjekt, trotzdem lassen sich die einzelnen Atome in einem optischen Gitter fangen. Solch ein Gitter wird aus dem elektromagnetischen Potenzial gekreuzter Laserstrahlen aufgebaut und ähnelt einem Eierkarton aus Licht, in dem sich die Atome verteilen. Die Teilchen können sich darin völlig ohne äußeren Einfluss, also ebenfalls selbstorganisiert, synchronisieren. „Das ist eine zentrale Neuigkeit unserer Arbeit“, sagt Timme.

Zur Hilfe kann man sich diese schwingenden Quantensysteme wie viele Huygensche Pendeluhren vorstellen. Über einen Balken, an dem sie gemeinsam aufgehängt sind, sind die Uhren miteinander gekoppelt. Folglich schwingen ihre Pendel nach einiger Zeit miteinander synchron. Genauso synchronisieren sich die Quantensysteme gegenseitig, indem sie miteinander wechselwirken. Dieser selbstorganisierte Übergang in ein synchronisiertes Kollektiv entspricht dabei noch ganz der klassischen Physik.

Synchronisierte Quantenobjekte sind verschränkt

Aber in der Quantenwelt passiert noch mehr – auch hier entsteht ein kollektiver Zustand. Und dieser Quantenzustand steht für die Unanschaulichkeit der Quantenmechanik schlechthin: die Verschränkung. Miteinander verschränkte Quantensysteme lassen sich nicht mehr unabhängig voneinander beschreiben. In unserem Uhrenbeispiel wäre das ungefähr so, als könne man die Pendel nicht mehr einzeln erkennen – jedes Pendel würde Informationen über alle anderen in sich tragen. Alle Pendel würden sich somit zusammen wie ein Objekt, ein Quantenobjekt, verhalten. „Klassische Synchronisation ist der ,rauchende Colt’ für das Entstehen quantenmechanischer Verschränkung“, sagt Dirk Witthaut, Erstautor der Studie, „und das ist äußerst erstaunlich.“

Diese Erkenntnis wirft ein neues Licht auf das faszinierende Phänomen der Verschränkung. Verschränkte Systeme werden seit Jahrzehnten routinemäßig in vielen Physiklabors hergestellt. Doch es geht nicht nur um Grundlagenforschung. Längst arbeitet das Forschungsgebiet der Quanteninformation daran, Verschränkung als technische Ressource zu nutzen, sei es in zukünftigen Quantencomputern oder bei der abhörsicheren Übertragung von Information. Die deutsch-italienische Kollaboration macht in ihrer Arbeit zudem konkrete Vorschläge, wie sich die selbstorganisierte Synchronisation eines Quantenkollektivs im Labor nachweisen ließe. Man darf also gespannt sein, in welcher Form das Phänomen sich tatsächlich zeigt und wie es die weitere Forschung inspiriert.

Für Marc Timme ist diese Arbeit auch ein Beleg dafür, wie wichtig die Zusammenarbeit verschiedener Disziplinen ist, um solche Entdeckungen zu machen. Er selbst ist Experte für die Dynamik klassischer selbstorganisierender Systeme und insbesondere Synchronisation. Seine Forschungsgebiete heißen in der Physik „Nichtlineare Dynamik“ und „Netzwerk-Dynamik“, ersteres wurde als „Chaostheorie“ weithin bekannt. Dirk Witthaut kommt dagegen aus der Quantenphysik. Die intensive Zusammenarbeit beider Denkschulen der Physik führte erst zu der Entdeckung, dass klassische Synchronisation in der Quantenwelt etwas mit quantenmechanischer Verschränkung zu tun hat. „Oft ist es aber sehr schwer, gerade solche interdisziplinären Projekte zu finanzieren und durchzuführen, weil sie sich keiner der traditionellen Disziplinen zuordnen lassen“, urteilt Timme. Der Göttinger Erfolg war nur möglich, weil die Max-Planck-Gesellschaft diese interdisziplinäre Forschung langfristig und zweckfrei unterstützt hat.


Ansprechpartner


Prof. Dr. Marc Timme
Netzwerk-Dynamik

Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen

Telefon: +49 551 517-6401
E-Mail: ayse@nld.ds.mpg.de

Weiterführender Link

Website der Forschungsgruppe Netzwerk-Dynamik


Originalpublikation
Dirk Witthaut, Sandro Wimberger, Raffaella Burioni und Marc Timme

Classical synchronization indicates persistent entanglement in isolated quantum systems

Nature Communications, 12. April 2017

Prof. Dr. Marc Timme | Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen
Weitere Informationen:
https://www.mpg.de/11296172/quantensysteme-synchronisation

Weitere Berichte zu: Atome Dynamik Pendel Quantensysteme Quantenteilchen Quantenwelt Synchronisation

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie