Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Quantenstift für einzelne Atome

17.03.2011
Physikern am Max-Planck-Institut für Quantenoptik ist es gelungen, Atome in einem Lichtgitter einzeln zu adressieren und beliebig anzuordnen. Dieses ist unter anderem für die Realisierung von Quantencomputern und zur Simulation von Festkörpersystemen von großer Bedeutung.

Weltweit ringen Physiker derzeit um den besten Weg für die Realisierung von Quantencomputern. Einen entscheidenden Schritt in diese Richtung haben jetzt Wissenschaftler um Stefan Kuhr und Immanuel Bloch vom Max-Planck-Institut für Quantenoptik (Garching bei München) gemacht. Sie konnten erstmals einzelne Atome mit Laserlicht ansprechen und zu beliebigen Strukturen anordnen (Nature 471, S. 319 (2011), DOI: 10.1038/ nature09827).


Abbildung 1: Mit Hilfe eines Laserstrahls können einzelne Atome im Lichtgitter gezielt adressiert und deren Spinzustand verändert werden. Die Forscher konnten so eine vollständige Kontrolle über die einzelnen Atome erreichen und beliebige zweidimensionale Muster aus einzelnen Atomen „schreiben“. MPQ


Abbildung 2: Mit dem Adressierschema lassen sich beliebige Muster von Atomen im Gitter präparieren. Die atomaren Muster bestehen aus jeweils 10-30 einzelnen Atomen, die in einem künstlichen Kristall aus Licht gefangen sind. (Bildmaterial online unter: www.quantum-munich.de/media) MPQ

So haben die Forscher die Atome entlang einer Linie aufgereiht und deren Tunneldynamik in einem „Wettrennen“ der Atome direkt beobachtet. Ein Register aus mehreren hundert adressierbaren Quantenteilchen könnte in einem Quantencomputer der Speicherung und Verarbeitung von Quanteninformation dienen.

Im vorliegenden Experiment kühlen die Wissenschaftler zunächst Rubidium-Atome auf eine Temperatur von einigen Milliardstel Grad über dem absoluten Nullpunkt und laden diese dann in einen künstlichen Kristall aus Licht. Solche sogenannten optischen Gitter werden von den Forschern durch die Überlagerung mehrerer Laserstrahlen erzeugt. Die Atome werden im Lichtgitter festgehalten – ähnlich wie Murmeln in den Mulden eines Eierkartons.

Das Team um Kuhr und Bloch zeigte bereits vor einigen Monaten, dass sich in diesem Lichtgitter jeder Platz mit genau einem Atom besetzen lässt. Mit Hilfe eines Mikroskops konnten die Wissenschaftler Atom für Atom sichtbar machen und dabei ihre schalenförmige Anordnung in diesem „Mott-Isolator“ nachweisen. Nun ist es den Forschern gelungen, die auf ihren Gitterplätzen fixierten Atome einzeln anzusprechen und ihre jeweiligen Energiezustände zu ändern. Mit Hilfe des Mikroskops fokussierten sie einen Laserstrahl auf einen Durchmesser von etwa 600 Nanometern, was knapp über dem Gitterabstand liegt, und richteten ihn mit hoher Genauigkeit auf einzelne Atome.

Der Laserstrahl deformiert die atomare Elektronenhülle ein kleines bisschen und verändert damit die Energiedifferenz zwischen den beiden Spin-Zuständen des Atoms. Atome mit einem Spin, d.h. einem Eigendrehimpuls, verhalten sich wie kleine Magnetnadeln, die sich in zwei entgegen gesetzten Richtungen ausrichten können. Bestrahlt man die Atome nun mit Mikrowellen, die mit dem modifizierten Spin-Übergang in Resonanz sind, dann absorbieren nur die adressierten Atome ein Mikrowellen-Photon, was ein Umklappen ihres Spins zur Folge hat. Alle anderen Atome im Gitter bleiben von dem Mikrowellenfeld unbeeinflusst.

Die hohe Zuverlässigkeit dieser Adressiertechnik demonstrierten die Wissenschaftler in einer Reihe von Versuchen. So wurden z. B. nacheinander die Spins aller Atome entlang einer Linie umgeklappt, indem der Adressierlaser von Gitterplatz zu Gitterplatz bewegt wurde. Anschließend wurden alle Atome mit umgeklapptem Spin aus der Falle entfernt. Die adressierten Atome werden so als Fehlstellen sichtbar, die leicht gezählt werden können. Daraus ließ sich ableiten, dass das Adressieren in 95% aller Fälle funktioniert. Die Atome auf benachbarten Gitterplätzen werden von dem Adressierlaser nicht beeinflusst, da sie nur noch einem Zehntel der Lichtintensität ausgesetzt sind. Auf diese Weise lassen sich beliebige Verteilungen von Atomen in dem Gitter erzeugen (siehe Abbildung).

An einer Anordnung von 16 Atomen, die auf benachbarten Gitterplätzen wie an einer Perlenschnur aneinander gereiht waren, untersuchten die Wissenschaftler, was passiert, wenn die Gitterhöhe soweit heruntergefahren wird, dass die Teilchen nach den Regeln der Quantenmechanik „tunneln“ dürfen – d. h. von einem Gitterplatz zum nächsten gelangen, auch wenn ihre Energie eigentlich nicht ausreicht, um die Barriere zwischen den Gittertöpfchen zu überspringen. „Sobald die Gitterhöhe den Punkt erreicht hat, an dem das Tunneln möglich ist, laufen die Teilchen los, wie bei einem Pferderennen“, erläutert Christof Weitenberg, Doktorand am Experiment. „Indem wir zu verschiedenen Zeiten nach dem „Startschuss“ Schnappschüsse von den Atomen im Gittern machten, konnten wir den quantenmechanischen Tunneleffekt erstmals direkt an einzelnen massiven Teilchen in einem Gitter beobachten.“

Die neuen Adressiertechniken ermöglichen viele interessante und kontrollierte Untersuchungen der Dynamik von kollektiven Quantenzuständen, wie sie in komplexen Festkörpersystemen auftreten. Aber auch in der Quanteninformationsverarbeitung eröffnen sich neue Perspektiven. „Ein Mott-Isolator mit genau einem Atom pro Gitterplatz stellt ein natürliches Quantenregister mit mehreren hundert Quantenbits dar, die ideale Ausgangsbasis für skalierbare Quanteninformationsverarbeitung“, erklärt Stefan Kuhr. „Wir haben gezeigt, dass wir einzelne Atome gezielt speichern und adressieren können. Damit das Atom als Quantenbit taugt, müssen wir auch noch kohärente Überlagerungen seiner beiden Spin-Zustände erzeugen können. Erst dann lassen sich z. B. elementare Logikoperationen zwischen zwei bestimmten Atomen im Gitter, sogenannte Quantengatter, realisieren.“ [Olivia Meyer-Streng]

Originalveröffentlichung:
Christof Weitenberg, Manuel Endres, Jacob F. Sherson, Marc Cheneau, Peter Schauß, Takeshi Fukuhara, Immanuel Bloch, and Stefan Kuhr
“Single-Spin Addressing in an Atomic Mott Insulator”
Nature 471, 319 (2011), DOI:10.1038/nature0982
Kontakt:
Prof. Dr. Stefan Kuhr
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Tel.: +49 89 32905 738
E-Mail: stefan.kuhr@mpq.mpg.de
Prof. Dr. Immanuel Bloch
Lehrstuhl für Physik, LMU München
Schellingstr. 4, 80799 München, und
Max-Planck-Institut für Quantenoptik
Tel.: +49 89 32905 138
E-Mail: immanuel.bloch@mpq.mpg.de
Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Tel.: +49 (0)89 / 32905 – 213
Fax: +49 (0)89 / 32905 – 200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.quantum-munich.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise