Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantensimulator öffnet sich der Welt

24.02.2011
Experimentalphysiker stecken viel Zeit und Mühe in die Abschirmung sensibler Messungen gegen störende Einflüsse der Umwelt.

Nun haben Quantenphysiker in Innsbruck erstmals die Grundbausteine eines offenen Quantensimulators realisiert, bei dem die kontrollierte Anbindung an die Umgebung nutzbringend eingesetzt wird. Damit kann in Zukunft das Verhalten sehr komplexer Quantensysteme untersucht werden. Die Forscher berichten darüber in der Fachzeitschrift Nature.


Ein Ion wechselwirkt mit dem Quantensystem und stellt gleichzeitig einen kontrollierten Kontakt zur Außenwelt her. Grafik: Harald Ritsch

Die Eigenschaften der Quantenphysik liegen vielen Phänomenen unserer Welt zugrunde: der Struktur von Atomen und Molekülen, chemischen Reaktionen, Materialeigenschaften, dem Magnetismus und möglicherweise auch manchen biologischen Prozessen. Detailliertes Verständnis stößt allerdings rasch an Grenzen, weil die Komplexität der Phänomene mit der wachsenden Zahl der beteiligten Quantenteilchen rapide ansteigt. Herkömmliche Computer scheitern sehr rasch an der Berechnung solcher Probleme.

Physiker entwickeln deshalb seit einigen Jahren auf verschiedenen Plattformen wie zum Beispiel Neutralatomen, Ionen oder Festkörpersystemen Quantensimulatoren, die ähnlich wie Quantencomputer die besonderen Eigenschaften der Quantenphysik zur Beherrschung dieser Komplexität nutzen. Zum Jahreswechsel hat die Fachzeitschrift Science die Fortschritte auf diesem Gebiet zu einem der wissenschaftlichen Durchbrüche des Jahres 2010 gekürt. Ein Team von Nachwuchsforschern aus den Arbeitsgruppen von Rainer Blatt und Peter Zoller an den Instituten für Experimentalphysik und Theoretische Physik der Universität Innsbruck sowie am Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften bringt diese Bemühungen nun noch einen wesentlichen Schritt weiter. Sie haben zum ersten Mal einen umfassenden Baukasten für einen offenen Quantencomputer entwickelt, mit dem in Zukunft größere Quantensimulatoren zur Untersuchung komplexer Aufgabenstellungen konstruiert werden können.

Kontrollierte Störungen erwünscht
Die Wissenschaftler nutzen dazu eine Eigenschaft, die üblicherweise in Experimenten möglichst minimiert wird: Störungen durch die Umwelt. Quantensysteme verlieren durch Störungen gewöhnlich Information und fragile Quanteneffekte wie Verschränkung oder Überlagerung werden zerstört. Die Physik nennt diesen Prozess Dissipation. Die Innsbrucker Forscher um die Experimentalphysiker Julio Barreiro und Philipp Schindler und den Theoretiker Markus Müller verwenden die Dissipation für ihren Quantensimulator aus gespeicherten Ionen zum ersten Mal gewinnbringend, indem sie die Kopplung an die Umgebung künstlich konstruieren. „Wir kontrollieren nicht nur das Quantensystem aus bis zu vier Ionen in all seinen internen Zuständen, sondern auch seine Anbindung an die Umwelt“, erklärt Julio Barreiro. „In unserem Experiment nutzen wir dazu ein zusätzliches Ion, das mit dem Quantensystem wechselwirkt und gleichzeitig einen kontrollierten Kontakt zur Außenwelt herstellt“, erläutert Philipp Schindler. Das überraschende Ergebnis: Durch Dissipation lassen sich Quanteneffekte innerhalb des Systems, wie zum Beispiel Verschränkung, gezielt erzeugen und verstärken. „Dies ist uns durch den gezielten Einsatz des an sich störenden Umweltfaktors gelungen“, freut sich Markus Müller.
Dissipation schafft Ordnung in der Quantenwelt
In einem der Experimente demonstrieren die Forscher den erfolgreichen Einsatz von Dissipation, indem sie mit Hilfe des Umgebungsions vier weitere Ionen vollständig miteinander verschränkten. „Im Gegensatz zu den üblichen Prozeduren funktioniert dies unabhängig von den Anfangszuständen der einzelnen Teilchen“, erklärt Müller. „Durch einen kollektiven Kühlungsprozess werden die Teilchen in einen gemeinsamen Zustand gedrängt.“ Auf diese Weise können Vielteilchenzustände erzeugt werden, die sonst nur in von der Umgebung sehr gut isolierten Quantensystemen hergestellt und beobachtet werden können. Dieser gewinnbringende Einsatz der Umgebung erlaubt es, neue Arten von Quantendynamik zu realisieren und Systeme zu erforschen, die bislang experimentell kaum zugänglich waren. In der Theorie hat in den letzten Jahren ein Nachdenken darüber eingesetzt, wie Dissipation nicht wie bisher nur unterdrückt, sondern aktiv als Ressource für den Bau von Quantencomputern oder Quantenspeichern genutzt werden kann. In enger Kooperation zwischen Theoretikern und Experimentalphysikern in Innsbruck ist es nun erstmals gelungen, diese grundlegenden Effekte in einem Quantensimulator erfolgreich umzusetzen.

Unterstützt wurden die Innsbrucker Forscher unter anderem vom Österreichischen Wissenschaftsfonds FWF, der Europäischen Kommission und der Tiroler Industrie.

Publikation: An Open-System Quantum Simulator with Trapped Ions. Julio T. Barreiro, Markus Müller, Philipp Schindler, Daniel Nigg, Thomas Monz, Michael Chwalla, Markus Hennrich, Christian F. Roos, Peter Zoller und Rainer Blatt. Nature 2011. DOI: 10.1038/nature09801

Rückfragehinweis:
Julio Barreiro
Institut für Experimentalphysik
Universität Innsbruck
Tel.: +43 512 507-6321
E-Mail: julio.barreiro@uibk.ac.at
Christian Roos
Institut für Quantenoptik und Quanteninformation (IQOQI)
Österreichische Akademie der Wissenschaften
Tel.: +43 512 507-4728
E-Mail: christian.roos@uibk.ac.at
Christian Flatz
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Tel.: +43 650 5777122
E-Mail: christian.flatz@uibk.ac.at
Weitere Informationen:
http://dx.doi.org/10.1038/nature09801 - An Open-System Quantum Simulator with Trapped Ions. Julio T. Barreiro, Markus Müller, Philipp Schindler, Daniel Nigg, Thomas Monz, Michael Chwalla, Markus Hennrich, Christian F. Roos, Peter Zoller und Rainer Blatt. Nature 2011.

Dr. Christian Flatz | Universität Innsbruck
Weitere Informationen:
http://www.uibk.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie