Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantensimulator öffnet sich der Welt

24.02.2011
Experimentalphysiker stecken viel Zeit und Mühe in die Abschirmung sensibler Messungen gegen störende Einflüsse der Umwelt.

Nun haben Quantenphysiker in Innsbruck erstmals die Grundbausteine eines offenen Quantensimulators realisiert, bei dem die kontrollierte Anbindung an die Umgebung nutzbringend eingesetzt wird. Damit kann in Zukunft das Verhalten sehr komplexer Quantensysteme untersucht werden. Die Forscher berichten darüber in der Fachzeitschrift Nature.


Ein Ion wechselwirkt mit dem Quantensystem und stellt gleichzeitig einen kontrollierten Kontakt zur Außenwelt her. Grafik: Harald Ritsch

Die Eigenschaften der Quantenphysik liegen vielen Phänomenen unserer Welt zugrunde: der Struktur von Atomen und Molekülen, chemischen Reaktionen, Materialeigenschaften, dem Magnetismus und möglicherweise auch manchen biologischen Prozessen. Detailliertes Verständnis stößt allerdings rasch an Grenzen, weil die Komplexität der Phänomene mit der wachsenden Zahl der beteiligten Quantenteilchen rapide ansteigt. Herkömmliche Computer scheitern sehr rasch an der Berechnung solcher Probleme.

Physiker entwickeln deshalb seit einigen Jahren auf verschiedenen Plattformen wie zum Beispiel Neutralatomen, Ionen oder Festkörpersystemen Quantensimulatoren, die ähnlich wie Quantencomputer die besonderen Eigenschaften der Quantenphysik zur Beherrschung dieser Komplexität nutzen. Zum Jahreswechsel hat die Fachzeitschrift Science die Fortschritte auf diesem Gebiet zu einem der wissenschaftlichen Durchbrüche des Jahres 2010 gekürt. Ein Team von Nachwuchsforschern aus den Arbeitsgruppen von Rainer Blatt und Peter Zoller an den Instituten für Experimentalphysik und Theoretische Physik der Universität Innsbruck sowie am Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften bringt diese Bemühungen nun noch einen wesentlichen Schritt weiter. Sie haben zum ersten Mal einen umfassenden Baukasten für einen offenen Quantencomputer entwickelt, mit dem in Zukunft größere Quantensimulatoren zur Untersuchung komplexer Aufgabenstellungen konstruiert werden können.

Kontrollierte Störungen erwünscht
Die Wissenschaftler nutzen dazu eine Eigenschaft, die üblicherweise in Experimenten möglichst minimiert wird: Störungen durch die Umwelt. Quantensysteme verlieren durch Störungen gewöhnlich Information und fragile Quanteneffekte wie Verschränkung oder Überlagerung werden zerstört. Die Physik nennt diesen Prozess Dissipation. Die Innsbrucker Forscher um die Experimentalphysiker Julio Barreiro und Philipp Schindler und den Theoretiker Markus Müller verwenden die Dissipation für ihren Quantensimulator aus gespeicherten Ionen zum ersten Mal gewinnbringend, indem sie die Kopplung an die Umgebung künstlich konstruieren. „Wir kontrollieren nicht nur das Quantensystem aus bis zu vier Ionen in all seinen internen Zuständen, sondern auch seine Anbindung an die Umwelt“, erklärt Julio Barreiro. „In unserem Experiment nutzen wir dazu ein zusätzliches Ion, das mit dem Quantensystem wechselwirkt und gleichzeitig einen kontrollierten Kontakt zur Außenwelt herstellt“, erläutert Philipp Schindler. Das überraschende Ergebnis: Durch Dissipation lassen sich Quanteneffekte innerhalb des Systems, wie zum Beispiel Verschränkung, gezielt erzeugen und verstärken. „Dies ist uns durch den gezielten Einsatz des an sich störenden Umweltfaktors gelungen“, freut sich Markus Müller.
Dissipation schafft Ordnung in der Quantenwelt
In einem der Experimente demonstrieren die Forscher den erfolgreichen Einsatz von Dissipation, indem sie mit Hilfe des Umgebungsions vier weitere Ionen vollständig miteinander verschränkten. „Im Gegensatz zu den üblichen Prozeduren funktioniert dies unabhängig von den Anfangszuständen der einzelnen Teilchen“, erklärt Müller. „Durch einen kollektiven Kühlungsprozess werden die Teilchen in einen gemeinsamen Zustand gedrängt.“ Auf diese Weise können Vielteilchenzustände erzeugt werden, die sonst nur in von der Umgebung sehr gut isolierten Quantensystemen hergestellt und beobachtet werden können. Dieser gewinnbringende Einsatz der Umgebung erlaubt es, neue Arten von Quantendynamik zu realisieren und Systeme zu erforschen, die bislang experimentell kaum zugänglich waren. In der Theorie hat in den letzten Jahren ein Nachdenken darüber eingesetzt, wie Dissipation nicht wie bisher nur unterdrückt, sondern aktiv als Ressource für den Bau von Quantencomputern oder Quantenspeichern genutzt werden kann. In enger Kooperation zwischen Theoretikern und Experimentalphysikern in Innsbruck ist es nun erstmals gelungen, diese grundlegenden Effekte in einem Quantensimulator erfolgreich umzusetzen.

Unterstützt wurden die Innsbrucker Forscher unter anderem vom Österreichischen Wissenschaftsfonds FWF, der Europäischen Kommission und der Tiroler Industrie.

Publikation: An Open-System Quantum Simulator with Trapped Ions. Julio T. Barreiro, Markus Müller, Philipp Schindler, Daniel Nigg, Thomas Monz, Michael Chwalla, Markus Hennrich, Christian F. Roos, Peter Zoller und Rainer Blatt. Nature 2011. DOI: 10.1038/nature09801

Rückfragehinweis:
Julio Barreiro
Institut für Experimentalphysik
Universität Innsbruck
Tel.: +43 512 507-6321
E-Mail: julio.barreiro@uibk.ac.at
Christian Roos
Institut für Quantenoptik und Quanteninformation (IQOQI)
Österreichische Akademie der Wissenschaften
Tel.: +43 512 507-4728
E-Mail: christian.roos@uibk.ac.at
Christian Flatz
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Tel.: +43 650 5777122
E-Mail: christian.flatz@uibk.ac.at
Weitere Informationen:
http://dx.doi.org/10.1038/nature09801 - An Open-System Quantum Simulator with Trapped Ions. Julio T. Barreiro, Markus Müller, Philipp Schindler, Daniel Nigg, Thomas Monz, Michael Chwalla, Markus Hennrich, Christian F. Roos, Peter Zoller und Rainer Blatt. Nature 2011.

Dr. Christian Flatz | Universität Innsbruck
Weitere Informationen:
http://www.uibk.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Atome rennen sehen - Phasenübergang live beobachtet
30.03.2017 | Universität Duisburg-Essen

nachricht Flipper auf atomarem Niveau
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE