Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Quantensimulator für magnetische Materialien

24.05.2013
Physiker der ETH Zürich haben einen Quantensimulator entwickelt, in dem Atome das Verhalten von Elektronen in magnetischen Materialien nachahmen.

Damit können schwierig zu verstehende Eigenschaften neuartiger Materialien systematisch untersucht werden, was letztlich auch zur Entwicklung neuer magnetischer Materialien führen könnte.


In magnetischen Materialien verhalten sich in einem Kristall eingebettete Elektronen wie kleine Magnete, die miteinander wechselwirken. Im Quantensimulator der ETH-Forschenden übernehmen Atome (rot und blau) die Rolle der Elektronen. Der Kristall (grau) wird durch eine Überlagerung mehrerer Laserstrahlen erzeugt.
Thomas Uehlinger / ETH Zürich

Weshalb ein Kühlschrankmagnet an bestimmten metallischen Oberflächen haften bleibt, das verstehen Physiker in jedem Detail. Magnetische Materialien existieren jedoch auch in exotischen Varianten, deren Eigenschaften trotz jahrzehntelanger Forschung noch weitgehend unverstanden sind.

Tilman Esslinger und seine Gruppe am Institut für Quantenoptik und -elektronik haben nun einen wesentlichen Schritt unternommen, diese Lücken zu schliessen. Das Team kombiniert Laserstrahlen und Atome so miteinander, dass Strukturen entstehen, die sich exakt wie magnetische Materialien verhalten.

Diese Methode verspricht grundlegende Erkenntnisse zu magnetischen Materialien zu liefern, die über das hinausgehen, was heutzutage mit theoretischen und computergestützten Methoden möglich ist. Die Arbeit könnte Forschern auch helfen, neue Materialien zu finden, die interessante Eigenschaften hinsichtlich zukünftiger Technologien und Anwendungen besitzen.

Das Konzert der winzigen Magneten

Magnetische Materialien verdanken ihre Eigenschaften einem komplexen Wechselspiel einer Vielzahl von winzigen Magneten, die in der Regel in der Form von einzelnen Elektronen vorliegen. Beobachtbarer Magnetismus tritt dann auf, wenn diese magnetischen Bausteine in bestimmten Mustern angeordnet sind, in denen sie durch quantenmechanische Wechselwirkungen festgehalten werden. Ein typischer Kühlschrankmagnet, zum Beispiel, besteht aus mehreren ferromagnetischen Teilstücken und in jedem Segment sind sämtliche Elementarmagnete parallel zueinander ausgerichtet, woraus das magnetische Verhalten resultiert.
In anderen magnetischen Materialien ist die Situation weniger anschaulich, da die magnetischen Bausteine in komplizierteren Mustern angeordnet sind. Ein Beispiele hierfür sind die sogenannten Quanten-Spin-Flüssigkeiten, in welchen die Elementarmagnete in einer Weise wechselwirken, die sie daran hindert, jemals in einem geordneten Zustand vorzuliegen. Physiker und Materialwissenschaftler sind an solchen unkonventionellen Magneten interessiert, weil sie grundlegende Probleme der Vielteilchen-Quantenphysik verkörpern, aber auch, weil diese Materialien Eigenschaften besitzen, die eine Grundlage bilden könnten für zukünftige magnetische Speichermedien oder für neuartige Formen der Informationsverarbeitung.

Quantensysteme mit Quantensystemen simulieren

Anders als im Fall von Kühlschrankmagneten lässt sich das Verhalten von Quanten-Spin-Flüssigkeiten und anderen exotischen magnetischen Zuständen, heutzutage nur sehr begrenzt voraussagen. Es ist ein hartnäckiges Problem, da die Wechselwirkung zwischen hunderten von Elementarmagneten berücksichtigt werden muss. Die Komplexität dieses Problems erklärt denn auch, warum viele magnetische Materialien — aber auch viele idealisierte Modellsysteme — heute nur unvollständig verstanden sind. Das fehlende Verständnis behindert Fortschritte in der Nutzung und Weiterentwicklung dieser Materialien.

Da herkömmliche Methoden für diese komplizierten Systeme häufig unzureichend sind, verfolgen Esslinger und seine Mitarbeiter einen gänzlich anderen Ansatz. Sie schaffen künstliche Materialien, die das Material, welches sie ursprünglich studieren wollen, replizieren. Mit anderen Worten, um das eigentliche Material zu untersuchen, führen die Wissenschaftler ihre Messungen an einem künstlich erschaffenen Gegenstück durch, das leichter zu handhaben ist und in dem wichtige Parameter (wie etwa die Stärke der Wechselwirkung zwischen den Elementarmagneten) verändert werden können.

Esslinger und sein Team schaffen ihre künstlichen Materialien, indem sie Atome verwenden, die sich im Wesentlichen wie Elektronen verhalten. Diese bringen sie dann in einen «Kristall» ein der durch eine Überlagerung mehrerer Laserstrahlen erzeugt wird. Sowohl die Laserstrahlen wie auch die gefangenen Atome können mit grosser Genauigkeit gesteuert werden. «Auf diese Weise können wir das quantenmechanische Verhalten von verschiedenen magnetischen Materialien simulieren», sagt Esslinger.
Vom Modell zur Anwendung

Die Erkundung von Eigenschaften eines quantenmechanischen Systems mit Hilfe eines anderen, das besser kontrollierbar ist, wird als Quantensimulation bezeichnet. In den vergangenen Jahren haben Physiker in diversen Forschungsgruppen intensiv daran gearbeitet, einen Quantensimulator für magnetische Materialien zu entwickeln – diese spezifische Anwendung gilt als eines der wichtigsten Ziele in diesem Feld. Esslinger und seinem Team ist es jetzt erstmals gelungen, ein Experiment aufzubauen, in dem das Verhalten einer grossen Anzahl von Elektronen in einem magnetischen Material direkt reproduziert wird. «Der Schlüssel zu unserem Erfolg ist eine Methode, die es uns ermöglicht, die extrem niedrigen Temperaturen zu erreichen, die benötigt werden, um Quantenmagnetismus erkunden zu können», erklärt Daniel Greif, Doktorand in der Gruppe von Esslinger und Erstautor der Studie. Ihre neue Methode ermöglichte es den Physikern, ein magnetisches System mit 5'000 Atomen zu erschaffen. Gemeinsam mit der Arbeitsgruppe von Matthias Troyer, Professor am Institut für Theoretische Physik, untersuchen sie derzeit, ob das Verhalten dieses Systems auf einem herkömmlichen Computer nachvollzogen werden kann.

Quantensimulatoren bieten die Möglichkeit, verschiedenste Szenarien durchzuspielen, wie Elektronen in einem magnetischen Material miteinander wechselwirken. Die Ergebnisse solcher Simulationen können dann mit dem Verhalten natürlicher magnetischer Materialien verglichen werden. Es besteht aber auch die Aussicht darauf, magnetische Zustände zu entdecken, die bisher noch nicht in natürlichen Materialien gesehen wurden. Dies wiederum könnte zu neuen Anwendungen führen, sagt Esslinger: «Die Triebfeder hinter neuen Technologien ist oft die Entwicklung neuer Materialien, wie etwa Hochtemperatur-Supraleiter, Graphen oder eben neue magnetische Materialien.»

Literaturhinweis

Greif D, Uehlinger T, Jotzu G, Tarruell L, Esslinger T: Short-range quantum magnetism of ultracold fermions in an optical lattice. Science, 2013, Online-Vorabveröfentlichung, doi: 10.1126/science.1236362

Roman Klingler | ETH Zürich
Weitere Informationen:
http://www.ethz.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics