Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Quantensimulator für komplexe elektronische Materialien

05.12.2008
Forscher simulieren komplexe elektronische Isolatoren mit ultrakalten Atomen in künstlichen Kristallen aus Licht.

Die Entwicklung neuer komplexer Materialien mit maßgeschneiderten Eigenschaften stellt eine der größten Herausforderungen in der modernen Quantenphysik dar. Bereits 1982 formulierte der amerikanische Nobelpreisträger Richard P. Feynman daher die Idee, die Eigenschaften komplexer Systeme mit Hilfe von Quantensimulatoren zu untersuchen, d.h. die Materialien mit anderen, künstlichen aber genau kontrollierbaren Quantensystemen zu simulieren.


Künstlerische Darstellung eines fermionischen Mott-Isolators. Aufgrund der dominanten abstoßenden Wechselwirkung ist jeder Gitterplatz mit genau einem Atom besetzt. Die Farben Rot und Grün symbolisieren verschiedene Spinzustände.
Universität Mainz

In der jüngsten Ausgabe der Zeitschrift Science berichtet ein Wissenschaftlerteam unter Leitung von Prof. Immanuel Bloch Direktor am Max-Planck-Institut für Quantenoptik (MPQ) und Ordinarius an der Johannes-Gutenberg-Universität in Mainz über ein neues Verfahren, um das Verhalten der Elektronen in einem Festkörperkristall mit Hilfe von ultrakalten Atomen zu simulieren. Die Atome sind dabei in einem künstlichen Lichtkristall, einem sogenannten optischen Gitter, gefangen, welches durch die Überlagerung mehrerer Laserstrahlen gebildet wird. Den Forschern aus Mainz, Köln und Jülich gelang es, in einem solchen System eines der spektakulärsten elektronischen Phänomene zu simulieren: Ein Metall kann schlagartig seine Leitfähigkeit verlieren, wenn die Wechselwirkung zwischen den Elektronen zu stark wird. Der resultierende sogenannte "Mott-Isolator" ist eines der wichtigsten Beispiele eines stark wechselwirkenden Systems in der Festkörperphysik. Es wird vermutet, dass dieses Phänomen in engem Zusammenhang zur Hochtemperatursupraleitung steht, die technisch interessant und vielversprechend, aber bisher noch schlecht verstanden ist. Zusätzlich bildet dieses System einen idealen Ausgangspunkt für die Untersuchung des magnetischen Verhaltens modernen Festkörpermaterialien.

"Fermionische Atome in einem optischen Gitter eignen sich nahezu perfekt dafür, das Verhalten von Elektronen in Festkörpern zu simulieren, da sie ein flexibles und sehr gut kontrollierbares Modell-System darstellen", erklärt Ulrich Schneider von der Universität Mainz. Die ablaufenden Prozesse in einem komplexen Material und in Hochtemperatursupraleitern direkt zu untersuchen, erweist sich im Vergleich dazu als äußerst schwierig, da in einem Festkörper unvermeidbare Störstellen und eine Vielzahl von miteinander konkurrierenden Wechselwirkungen auftreten. "In einem realen Festkörper ist es sehr schwierig die Auswirkungen bestimmter Wechselwirkungen zu isolieren und festzustellen, ob die Abstoßung zwischen den Elektronen allein die Hochtemperatursupraleitung erklären könnte", erläutert Prof. Bloch.

Im Experiment werden nun Kalium-Atome zuerst auf Temperaturen nahe dem absoluten Nullpunkt abgekühlt und anschließend in ein optisches Gitter geladen, welches durch die Überlagerung von mehreren Laserstrahlen gebildet wird. Dabei ordnen sich die Atome in den Knoten der stehenden Laserwelle an und das Lichtfeld wirkt auf die Teilchen wie ein regelmäßiger Kristall aus einigen hunderttausend einzelnen Mikrofallen aus Licht. Im Simulator übernehmen die Atome die Rolle der Elektronen in einem echten Festkörperkristall, während das Kristallgitter, welches in einem Festkörper aus den Atomrümpfen besteht, durch die überlagerten Laserstrahlen gebildet wird.

Die Versuchsanordnung in Mainz ermöglichte es den Physikern die Dichte der Atome und die Stärke der abstoßenden Wechselwirkung im optischen Gitter unabhängig voneinander einzustellen. Dadurch war es möglich, gezielt zwischen metallischen und isolierenden Zuständen hin- und herzuschalten. Insbesondere gelang es, die Existenz des Mott-Isolators in diesem System direkt nachweisen: "Im Gegensatz zu metallischen Zuständen ändert sich die Dichte des Mott-Isolators bei steigendem Druck nicht, da die abstoßenden Kräfte zwischen den Atomen dafür sorgen, dass sich auf jedem Gitterplatz jeweils nur genau ein Atom befindet," betont Prof. Bloch.

Die Beobachtung des fermionischen Mott-Isolators in einem optischen Gitter eröffnet neue Möglichkeiten, stark korrelierte Zustände und die damit zusammenhängenden Phänomene zu simulieren und zu untersuchen. Dafür spricht auch die ausgezeichnete Übereinstimmung der Messdaten mit den theoretischen Berechnungen, die in Köln und Jülich mit Hilfe des Jülicher Supercomputers JUGENE auf der Basis moderner Festkörpertheorie durchgeführt wurden. [I.B.]

Originalveröffentlichung:
U. Schneider, L. Hackermüller, S. Will, Th. Best, and I. Bloch, T.A. Costi,
R.W. Helmes, D. Rasch, and A. Rosch
"Metallic and Insulating Phases of Repulsively Interacting Fermions in a 3D Optical Lattice"

Science, 5. Dezember 2008

Kontakt:

Prof. Dr. Immanuel Bloch
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1
D-85748 Garching
Tel.: (+ 49 89) 32905 - 238
Fax: (+ 49 89) 32905 - 760
E-Mail: immanuel.bloch[a]mpq.mpg.de
Johannes Gutenberg-Universität Mainz
Staudingerweg 7
D 55128 Mainz
Tel.: (+49 6131) 39-26234 / 22279
Fax: (+49 6131) 39-25179
E-Mail: Bloch[a]Uni-Mainz.de

Dr. Olivia Meyer-Streng | idw
Weitere Informationen:
http://www.mpq.mpg.de
http://www.quantum.physik.uni-mainz.de/bec
http://www.uni-mainz.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie