Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantensimulator mit großem Potential

07.04.2009
MPQ-Wissenschaftler erfinden neues Verfahren für die Steuerung atomarer Gase

In vielen noch nicht verstandenen Bereichen der Physik setzen die Wissenschaftler ihre Hoffnung in den Quantencomputer.

Die besonderen Eigenschaften der Quantenteilchen, die hier der Speicherung und Kodierung von Informationen dienen, sollen die Lösung komplexer Fragestellungen ermöglichen, an denen klassische Computer aus Gründen der Rechenzeit scheitern. Die Realisierung eines universellen Quantencomputers, der beliebige Aufgaben bearbeiten kann, ist noch nicht in greifbarer Nähe. Allerdings können bereits mit heutigen Methoden so genannte Quantensimulationen durchgeführt werden.

Hierbei bilden Anordnungen aus direkt steuerbaren Quantenteilchen Modelle für komplexe Systeme, die sich gezielten Manipulationen entziehen. Ein neues, viel versprechendes Verfahren hat jetzt ein Team um Professor Gerhard Rempe vom Max-Planck-Institut für Quantenoptik in Garching entwickelt. Wie die Forscher in der Zeitschrift Nature Physics (Advance online Publication, 6. April 2009) berichten, können sie durch gleichzeitiges Anlegen geeigneter Laser- und Magnetfelder die Eigenschaften atomarer Gase verändern.

So erhalten die Forscher ein Werkzeug, um die Gase auf kleinen Skalen im Nanometerbereich und noch dazu zeitlich schnell veränderbar zu manipulieren. Damit könnte es möglicherweise gelingen, die Vorgänge in Schwarzen Löchern oder Festkörpereigenschaften wie die Supraleitung besser zu verstehen.

Die Physiker beginnen ihr Experiment mit einer dünnen Wolke aus etwa 100 000 Rubidiumatomen, die so stark abgekühlt ist, dass die Atome ein so genanntes Bose-Einstein-Kondensat (BEC) bilden: Sie verlieren ihre Individualität und verhalten sich wie ein einziges Superatom. Dabei spürt jedes Atom die Gegenwart der umgebenden Atome, denn es tritt mit diesen durch Stöße in Wechselwirkung. Während eines Stoßes kommen sich je zwei Atome sehr nahe und bilden dabei kurzzeitig ein Molekül, bevor sie wieder als freie Atome auseinander fliegen.

Um die Eigenschaften solcher Stöße gezielt zu beeinflussen, wird seit einigen Jahren eine Methode verwendet, bei der von außen ein Magnetfeld an das Gas angelegt wird. Dadurch gelingt es, die Zeit zu verlängern, in der ein Atompaar während eines Stoßes als temporär geformtes Molekül vorliegt. Mit der Änderung der Stoßeigenschaften ändern sich dann auch die Eigenschaften des Gases als Ganzes. Diese Methode ist recht erfolgreich. Allerdings ist ihr Anwendungsbereich leider dadurch begrenzt, dass aufgrund der geometrischen Verhältnisse diese Manipulation nicht auf sehr kleinen räumlichen Skalen durchzuführen ist.

Vor wenigen Jahren wurde eine alternative Methode entwickelt, bei der anstelle des Magnetfeldes Laserlicht verwendet wird, um die Stoßeigenschaften der Atome gezielt zu beeinflussen. Die Frequenz des Laserlichts muss dabei in der Nähe der Anregungsenergie der temporär gebildeten Moleküle liegen. Die Lichtintensität lässt sich naturgemäß mit hoher räumlicher Auflösung, nämlich auf der Skala der optischen Wellenlänge (einige hundert Nanometer) steuern, so dass auch die Eigenschaften des Gases auf dieser Längenskala von außen vorgegeben werden können. Allerdings führt der Einfluss des Laserlichts leider auch dazu, dass Teilchen aus dem kalten Gas verloren gehen, und zwar so schnell, dass sich die Methode kaum für praktische Anwendungen nutzen lässt.

In dem vorliegenden Experiment kombinieren die Wissenschaftler erstmals beide Steuerungstechniken, d.h. sie legen ein Magnetfeld an und bestrahlen die kalte Atomwolke gleichzeitig mit Laserlicht. Wie die Forscher in ihren Messungen zeigten, verändert das Laserlicht auch hier die Stoßeigenschaften. Allerdings sind dafür jetzt weniger hohe Lichtintensitäten nötig, da die Atompaare wegen des Magnetfelds längere Zeit als gebundene Moleküle vorliegen. Die Verlustprozesse laufen daher deutlich langsamer ab. Die Eigenschaften des Atomgases können hier also mit Laserlicht (und daher auf kleinen Längenskalen) beeinflusst werden, jedoch mit weit geringeren Teilchenverlusten als bei der bisher bekannten Technik.

Diese Ergebnisse haben ein hohes Anwendungspotential. Man kann z.B. mit einer holographischen Maske ein komplexes Lichtmuster erzeugen und dem Bose-Einstein-Kondensat überlagern. Die Lichtintensität kann dabei auf einer Skala moduliert werden, die der optischen Wellenlänge entspricht, und außerdem kann das Muster innerhalb kurzer Zeit verändert werden. Damit entsteht die Möglichkeit, die Stoßeigenschaften in einem ultrakalten Gas durch Licht sehr flexibel zu verändern.

Der nächste Schritt wird darin bestehen, diese Methode auf ein BEC in einem optischen Gitter anzuwenden. Das ist ein Kristall aus Licht, der durch geeignete Überlagerung aus stehenden Laserwellen erzeugt wird, sodass sich helle und dunkle Gebiete periodisch abwechseln. In diesem Lichtfeld bewegen sich die Atome ähnlich wie die Elektronen im Kristallgitter eines Festkörpers. Durch Kombination mit der neuen Methode können in solchen Gittern weit komplexere Systeme simuliert werden, als mit den bisherigen Methoden, mit denen die Wechselwirkungsstärke entweder nur für alle Gitterplätze gleichzeitig verändert werden konnte, oder die Teilchen so schnell verloren gingen, dass kaum Zeit zum Experimentieren blieb. Damit eröffnen sich deutlich breitere Anwendungsbereiche für Quantensimulationen. [OM/SD]

Originalveröffentlichung:
Dominik M. Bauer, Matthias Lettner, Christoph Vo, Gerhard Rempe, and Stephan Dürr
"Control of a magnetic Feshbach resonance with light"
Nature Physics, Advance online publication, 6. April 2009
Kontakt:
Prof. Dr. Gerhard Rempe
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Telefon: +49 - 89 / 32905 - 701
Fax: +49 - 89 / 32905 - 311
E-Mail: gerhard.rempe@mpq.mpg.de
Dr. Olivia Meyer-Streng
Presse & Kommunikation
Max-Planck-Institut für Quantenoptik
Telefon: +49 - 89 / 32905 - 213
Fax: +49 - 89 / 32905 - 200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die Sonne: Motor des Erdklimas
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

nachricht Entfesselte Magnetkraft
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie

Entfesselte Magnetkraft

23.08.2017 | Physik Astronomie