Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantensimulator mit großem Potential

07.04.2009
MPQ-Wissenschaftler erfinden neues Verfahren für die Steuerung atomarer Gase

In vielen noch nicht verstandenen Bereichen der Physik setzen die Wissenschaftler ihre Hoffnung in den Quantencomputer.

Die besonderen Eigenschaften der Quantenteilchen, die hier der Speicherung und Kodierung von Informationen dienen, sollen die Lösung komplexer Fragestellungen ermöglichen, an denen klassische Computer aus Gründen der Rechenzeit scheitern. Die Realisierung eines universellen Quantencomputers, der beliebige Aufgaben bearbeiten kann, ist noch nicht in greifbarer Nähe. Allerdings können bereits mit heutigen Methoden so genannte Quantensimulationen durchgeführt werden.

Hierbei bilden Anordnungen aus direkt steuerbaren Quantenteilchen Modelle für komplexe Systeme, die sich gezielten Manipulationen entziehen. Ein neues, viel versprechendes Verfahren hat jetzt ein Team um Professor Gerhard Rempe vom Max-Planck-Institut für Quantenoptik in Garching entwickelt. Wie die Forscher in der Zeitschrift Nature Physics (Advance online Publication, 6. April 2009) berichten, können sie durch gleichzeitiges Anlegen geeigneter Laser- und Magnetfelder die Eigenschaften atomarer Gase verändern.

So erhalten die Forscher ein Werkzeug, um die Gase auf kleinen Skalen im Nanometerbereich und noch dazu zeitlich schnell veränderbar zu manipulieren. Damit könnte es möglicherweise gelingen, die Vorgänge in Schwarzen Löchern oder Festkörpereigenschaften wie die Supraleitung besser zu verstehen.

Die Physiker beginnen ihr Experiment mit einer dünnen Wolke aus etwa 100 000 Rubidiumatomen, die so stark abgekühlt ist, dass die Atome ein so genanntes Bose-Einstein-Kondensat (BEC) bilden: Sie verlieren ihre Individualität und verhalten sich wie ein einziges Superatom. Dabei spürt jedes Atom die Gegenwart der umgebenden Atome, denn es tritt mit diesen durch Stöße in Wechselwirkung. Während eines Stoßes kommen sich je zwei Atome sehr nahe und bilden dabei kurzzeitig ein Molekül, bevor sie wieder als freie Atome auseinander fliegen.

Um die Eigenschaften solcher Stöße gezielt zu beeinflussen, wird seit einigen Jahren eine Methode verwendet, bei der von außen ein Magnetfeld an das Gas angelegt wird. Dadurch gelingt es, die Zeit zu verlängern, in der ein Atompaar während eines Stoßes als temporär geformtes Molekül vorliegt. Mit der Änderung der Stoßeigenschaften ändern sich dann auch die Eigenschaften des Gases als Ganzes. Diese Methode ist recht erfolgreich. Allerdings ist ihr Anwendungsbereich leider dadurch begrenzt, dass aufgrund der geometrischen Verhältnisse diese Manipulation nicht auf sehr kleinen räumlichen Skalen durchzuführen ist.

Vor wenigen Jahren wurde eine alternative Methode entwickelt, bei der anstelle des Magnetfeldes Laserlicht verwendet wird, um die Stoßeigenschaften der Atome gezielt zu beeinflussen. Die Frequenz des Laserlichts muss dabei in der Nähe der Anregungsenergie der temporär gebildeten Moleküle liegen. Die Lichtintensität lässt sich naturgemäß mit hoher räumlicher Auflösung, nämlich auf der Skala der optischen Wellenlänge (einige hundert Nanometer) steuern, so dass auch die Eigenschaften des Gases auf dieser Längenskala von außen vorgegeben werden können. Allerdings führt der Einfluss des Laserlichts leider auch dazu, dass Teilchen aus dem kalten Gas verloren gehen, und zwar so schnell, dass sich die Methode kaum für praktische Anwendungen nutzen lässt.

In dem vorliegenden Experiment kombinieren die Wissenschaftler erstmals beide Steuerungstechniken, d.h. sie legen ein Magnetfeld an und bestrahlen die kalte Atomwolke gleichzeitig mit Laserlicht. Wie die Forscher in ihren Messungen zeigten, verändert das Laserlicht auch hier die Stoßeigenschaften. Allerdings sind dafür jetzt weniger hohe Lichtintensitäten nötig, da die Atompaare wegen des Magnetfelds längere Zeit als gebundene Moleküle vorliegen. Die Verlustprozesse laufen daher deutlich langsamer ab. Die Eigenschaften des Atomgases können hier also mit Laserlicht (und daher auf kleinen Längenskalen) beeinflusst werden, jedoch mit weit geringeren Teilchenverlusten als bei der bisher bekannten Technik.

Diese Ergebnisse haben ein hohes Anwendungspotential. Man kann z.B. mit einer holographischen Maske ein komplexes Lichtmuster erzeugen und dem Bose-Einstein-Kondensat überlagern. Die Lichtintensität kann dabei auf einer Skala moduliert werden, die der optischen Wellenlänge entspricht, und außerdem kann das Muster innerhalb kurzer Zeit verändert werden. Damit entsteht die Möglichkeit, die Stoßeigenschaften in einem ultrakalten Gas durch Licht sehr flexibel zu verändern.

Der nächste Schritt wird darin bestehen, diese Methode auf ein BEC in einem optischen Gitter anzuwenden. Das ist ein Kristall aus Licht, der durch geeignete Überlagerung aus stehenden Laserwellen erzeugt wird, sodass sich helle und dunkle Gebiete periodisch abwechseln. In diesem Lichtfeld bewegen sich die Atome ähnlich wie die Elektronen im Kristallgitter eines Festkörpers. Durch Kombination mit der neuen Methode können in solchen Gittern weit komplexere Systeme simuliert werden, als mit den bisherigen Methoden, mit denen die Wechselwirkungsstärke entweder nur für alle Gitterplätze gleichzeitig verändert werden konnte, oder die Teilchen so schnell verloren gingen, dass kaum Zeit zum Experimentieren blieb. Damit eröffnen sich deutlich breitere Anwendungsbereiche für Quantensimulationen. [OM/SD]

Originalveröffentlichung:
Dominik M. Bauer, Matthias Lettner, Christoph Vo, Gerhard Rempe, and Stephan Dürr
"Control of a magnetic Feshbach resonance with light"
Nature Physics, Advance online publication, 6. April 2009
Kontakt:
Prof. Dr. Gerhard Rempe
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Telefon: +49 - 89 / 32905 - 701
Fax: +49 - 89 / 32905 - 311
E-Mail: gerhard.rempe@mpq.mpg.de
Dr. Olivia Meyer-Streng
Presse & Kommunikation
Max-Planck-Institut für Quantenoptik
Telefon: +49 - 89 / 32905 - 213
Fax: +49 - 89 / 32905 - 200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Biophysik - Blitzlicht aus der Nanowelt
24.04.2018 | Ludwig-Maximilians-Universität München

nachricht Moleküle brillant beleuchtet
23.04.2018 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Impfstoff-Kandidat gegen Malaria erfolgreich in erster klinischer Studie untersucht

25.04.2018 | Biowissenschaften Chemie

Erkheimer Ökohaus-Pionier eröffnet neues Musterhaus „Heimat 4.0“

25.04.2018 | Architektur Bauwesen

Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

25.04.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics