Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantensimulation eines relativistischen Teilchens

07.01.2010
Dirac-Gleichung, ein Eckstein der Physik, von Innsbrucker Quantenphysikern simuliert

Forscher des Instituts für Quantenoptik und Quanteninformation (IQOQI) verwendeten ein Ion zur Simulation eines relativistischen Quantenteilchens und konnten dabei ein Phänomen nachweisen, das in der Natur nie direkt beobachtet wurde: die sogenannte Zitterbewegung. Sie berichten darüber in der aktuellen Ausgabe der Fachzeitschrift Nature.

Nachdem sich die Quantenmechanik in den 1920er-Jahren etabliert hatte, gelang es dem britischen Physiker Paul Dirac 1928 erstmals, diese Theorie auch mit der von Albert Einstein postulierten Speziellen Relativitätstheorie zu verbinden. Damit konnte die Quantenphysik auch auf Teilchen anwendbar gemacht werden, für die relativistische Verhältnisse gelten, die sich also mit extrem hoher Geschwindigkeit (nahe der Lichtgeschwindigkeit) bewegen. Aus der von Dirac formulierten Gleichung entsprangen einige bahnbrechende neue Erkenntnisse wie jene, dass es zu jedem Teilchen auch ein Antiteilchen (die Antimaterie) gibt, sowie eine natürliche Erklärung für die Existenz des Elektronenspins. Der österreichische Nobelpreisträger Erwin Schrödinger postulierte in der Folge 1930 die Existenz der sogenannten Zitterbewegung, einer Art Fluktuation in der Bewegung relativistischer Teilchen. „Nach der Dirac-Gleichung bewegt sich ein solches Teilchen im freien Raum nicht geradlinig fort, sondern ‚zittert’ in allen drei Raumdimensionen“, erklärt Christian Roos vom Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften (ÖAW). „Es ist unklar, ob sich diese Zitterbewegung in der Natur direkt beobachten lässt.“

Quantensimulation eines Quantenteilchens
Physikalische Phänomene werden oftmals durch Gleichungen beschrieben, die zu kompliziert sind, um sie exakt zu lösen. In diesem Fall stützen sich Wissenschaftler oft auf Computersimulationen, um Antworten auf offene Fragen zu erhalten. Da diese Strategie selbst für relativ kleine Quantensysteme an der mangelnden Rechenleistung der Computer scheitert, haben Forscher wie Richard Feynman vorgeschlagen, diese Phänomene in anderen Quantensystemen experimentell zu simulieren. Voraussetzung dafür sind freilich sehr detaillierte Kenntnisse der Physik dieser Systeme und eine extrem gute Beherrschung der Technologie. All dies hat die Forschungsgruppe um Prof. Rainer Blatt mit ihren Experimenten zu Quantencomputern in den vergangenen Jahren in Innsbruck aufgebaut und ist daher nun in der Lage, solche Quantensimulationen im Labor durchzuführen. „Die Herausforderung besteht darin, die Gleichungen in dem Quantensystem gut nachzubilden, die verschiedenen Parameter über einen weiten Bereich zu kontrollieren und die Ergebnisse zu messen“, sagt Christian Roos. Die Innsbrucker Experimentalphysiker haben dazu ein Kalziumatom in einer Ionenfalle gefangen und mit Lasern stark abgekühlt. In diesem wohldefinierten Zustand wurden dem Teilchen mit Hilfe von weiteren Lasern die Eigenschaften des zu simulierenden relativistischen Teilchens eingeschrieben. „Unser Quantensystem verhielt sich nun genau so wie ein freies, relativistisches Teilchen, das den Gesetzmäßigkeiten der Dirac-Gleichung gehorcht“, erklärt Rene Gerritsma, niederländischer Postdoc am IQOQI und Erstautor des Beitrags in der Fachzeitschrift Nature. Mit Hilfe von Messungen konnten die Wissenschaftler schließlich die Eigenschaften dieses simulierten Teilchens charakterisieren. „So gelang es uns, die Zitterbewegung in der Simulation nachzuweisen. Auch konnten wir die Wahrscheinlichkeit bestimmen, mit der sich das Teilchen an einem bestimmten Ort befindet“, erläutert Gerritsma. In dem sehr kleinen Quantensystem bildeten die Physiker die Dirac-Gleichung nur für eine räumliche Dimension nach. „Es handelt sich um ein Demonstrationsexperiment“, sagt Roos, „das mit entsprechendem technologischen Aufwand auch auf dreidimensionale Verhältnisse umgelegt werden kann.“
Auch Antiteilchen simuliert
Das Innsbrucker Experiment zeichnet sich durch eine extrem gute Beherrschung der physikalischen Eigenschaften des simulierten Teilchens aus. So konnten die Physiker zum Beispiel die Masse des Objekts verändern und auch Antiteilchen simulieren. „Letztendlich war unser Zugang sehr einfach, aber man muss erst einmal auf die Idee kommen, es so zu machen“, sagt Christian Roos, dessen Team sich dabei vom theoretischen Vorschlag einer spanischen Forschergruppe inspirieren ließ. Finanziell unterstützt wurden die Forscher unter anderem vom österreichischen Wissenschaftsfonds FWF und der Europäischen Kommission.

Publikation: Quantum simulation of the Dirac equation. Gerritsma R, Kirchmair G, Zähringer F, Solano E, Blatt R, Roos CF. Nature 7. Januar 2010. (In der gleichen Ausgabe findet sich ein „News and Views“-Beitrag von Christof Wunderlich zu dieser Arbeit)

Kontakt:
Dr. Christian Roos
Institut für Quantenoptik und Quanteninformation
Österreichische Akademie der Wissenschaften
Otto-Hittmair-Platz 1
A-6020 Innsbruck, Austria
Tel.: +43 512 507-4728
E-Mail: Christian.Roos@uibk.ac.at
Dr. Christian Flatz
Public Relations
Institut für Quantenoptik und Quanteninformation
Österreichische Akademie der Wissenschaften
Otto-Hittmair-Platz 1, 6020 Innsbruck, Austria
Mobil: +43 650 5777122
E-Mail: pr-iqoqi@oeaw.ac.at

Dr. Christian Flatz | IQOQI
Weitere Informationen:
http://www.iqoqi.at
http://www.quantumoptics.at
http://iqoqi.at/download

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien
17.01.2018 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Projekt "HorseVetMed": Forscher entwickeln innovatives Sensorsystem zur Tierdiagnostik

17.01.2018 | Agrar- Forstwissenschaften

Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt

17.01.2018 | Physik Astronomie

Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

17.01.2018 | Physik Astronomie