Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantensimulation eines relativistischen Teilchens

07.01.2010
Dirac-Gleichung, ein Eckstein der Physik, von Innsbrucker Quantenphysikern simuliert

Forscher des Instituts für Quantenoptik und Quanteninformation (IQOQI) verwendeten ein Ion zur Simulation eines relativistischen Quantenteilchens und konnten dabei ein Phänomen nachweisen, das in der Natur nie direkt beobachtet wurde: die sogenannte Zitterbewegung. Sie berichten darüber in der aktuellen Ausgabe der Fachzeitschrift Nature.

Nachdem sich die Quantenmechanik in den 1920er-Jahren etabliert hatte, gelang es dem britischen Physiker Paul Dirac 1928 erstmals, diese Theorie auch mit der von Albert Einstein postulierten Speziellen Relativitätstheorie zu verbinden. Damit konnte die Quantenphysik auch auf Teilchen anwendbar gemacht werden, für die relativistische Verhältnisse gelten, die sich also mit extrem hoher Geschwindigkeit (nahe der Lichtgeschwindigkeit) bewegen. Aus der von Dirac formulierten Gleichung entsprangen einige bahnbrechende neue Erkenntnisse wie jene, dass es zu jedem Teilchen auch ein Antiteilchen (die Antimaterie) gibt, sowie eine natürliche Erklärung für die Existenz des Elektronenspins. Der österreichische Nobelpreisträger Erwin Schrödinger postulierte in der Folge 1930 die Existenz der sogenannten Zitterbewegung, einer Art Fluktuation in der Bewegung relativistischer Teilchen. „Nach der Dirac-Gleichung bewegt sich ein solches Teilchen im freien Raum nicht geradlinig fort, sondern ‚zittert’ in allen drei Raumdimensionen“, erklärt Christian Roos vom Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften (ÖAW). „Es ist unklar, ob sich diese Zitterbewegung in der Natur direkt beobachten lässt.“

Quantensimulation eines Quantenteilchens
Physikalische Phänomene werden oftmals durch Gleichungen beschrieben, die zu kompliziert sind, um sie exakt zu lösen. In diesem Fall stützen sich Wissenschaftler oft auf Computersimulationen, um Antworten auf offene Fragen zu erhalten. Da diese Strategie selbst für relativ kleine Quantensysteme an der mangelnden Rechenleistung der Computer scheitert, haben Forscher wie Richard Feynman vorgeschlagen, diese Phänomene in anderen Quantensystemen experimentell zu simulieren. Voraussetzung dafür sind freilich sehr detaillierte Kenntnisse der Physik dieser Systeme und eine extrem gute Beherrschung der Technologie. All dies hat die Forschungsgruppe um Prof. Rainer Blatt mit ihren Experimenten zu Quantencomputern in den vergangenen Jahren in Innsbruck aufgebaut und ist daher nun in der Lage, solche Quantensimulationen im Labor durchzuführen. „Die Herausforderung besteht darin, die Gleichungen in dem Quantensystem gut nachzubilden, die verschiedenen Parameter über einen weiten Bereich zu kontrollieren und die Ergebnisse zu messen“, sagt Christian Roos. Die Innsbrucker Experimentalphysiker haben dazu ein Kalziumatom in einer Ionenfalle gefangen und mit Lasern stark abgekühlt. In diesem wohldefinierten Zustand wurden dem Teilchen mit Hilfe von weiteren Lasern die Eigenschaften des zu simulierenden relativistischen Teilchens eingeschrieben. „Unser Quantensystem verhielt sich nun genau so wie ein freies, relativistisches Teilchen, das den Gesetzmäßigkeiten der Dirac-Gleichung gehorcht“, erklärt Rene Gerritsma, niederländischer Postdoc am IQOQI und Erstautor des Beitrags in der Fachzeitschrift Nature. Mit Hilfe von Messungen konnten die Wissenschaftler schließlich die Eigenschaften dieses simulierten Teilchens charakterisieren. „So gelang es uns, die Zitterbewegung in der Simulation nachzuweisen. Auch konnten wir die Wahrscheinlichkeit bestimmen, mit der sich das Teilchen an einem bestimmten Ort befindet“, erläutert Gerritsma. In dem sehr kleinen Quantensystem bildeten die Physiker die Dirac-Gleichung nur für eine räumliche Dimension nach. „Es handelt sich um ein Demonstrationsexperiment“, sagt Roos, „das mit entsprechendem technologischen Aufwand auch auf dreidimensionale Verhältnisse umgelegt werden kann.“
Auch Antiteilchen simuliert
Das Innsbrucker Experiment zeichnet sich durch eine extrem gute Beherrschung der physikalischen Eigenschaften des simulierten Teilchens aus. So konnten die Physiker zum Beispiel die Masse des Objekts verändern und auch Antiteilchen simulieren. „Letztendlich war unser Zugang sehr einfach, aber man muss erst einmal auf die Idee kommen, es so zu machen“, sagt Christian Roos, dessen Team sich dabei vom theoretischen Vorschlag einer spanischen Forschergruppe inspirieren ließ. Finanziell unterstützt wurden die Forscher unter anderem vom österreichischen Wissenschaftsfonds FWF und der Europäischen Kommission.

Publikation: Quantum simulation of the Dirac equation. Gerritsma R, Kirchmair G, Zähringer F, Solano E, Blatt R, Roos CF. Nature 7. Januar 2010. (In der gleichen Ausgabe findet sich ein „News and Views“-Beitrag von Christof Wunderlich zu dieser Arbeit)

Kontakt:
Dr. Christian Roos
Institut für Quantenoptik und Quanteninformation
Österreichische Akademie der Wissenschaften
Otto-Hittmair-Platz 1
A-6020 Innsbruck, Austria
Tel.: +43 512 507-4728
E-Mail: Christian.Roos@uibk.ac.at
Dr. Christian Flatz
Public Relations
Institut für Quantenoptik und Quanteninformation
Österreichische Akademie der Wissenschaften
Otto-Hittmair-Platz 1, 6020 Innsbruck, Austria
Mobil: +43 650 5777122
E-Mail: pr-iqoqi@oeaw.ac.at

Dr. Christian Flatz | IQOQI
Weitere Informationen:
http://www.iqoqi.at
http://www.quantumoptics.at
http://iqoqi.at/download

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungsnachrichten

Auf dem Weg zur lückenlosen Qualitätsüberwachung in der gesamten Lieferkette

25.04.2017 | Verkehr Logistik

Digitalisierung bringt Produktion zurück an den Standort Deutschland

25.04.2017 | Wirtschaft Finanzen