Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantensimulation mit Licht: Frustration bei der Paarbildung

22.02.2011
Quantensysteme werden als frustriert bezeichnet, wenn konkurrierende Wechselwirkungen nicht gleichzeitig befriedigt werden können.

Einem Forschungsteam der Universität Wien und des Instituts für Quantenoptik und Quanteninformation der ÖAW um Philip Walther und Anton Zeilinger gelang es, erstmals Quanteneffekte von komplexen Vielteilchensystemen zu simulieren. Die im Fachjournal "Nature Physics" veröffentlichten Ergebnisse verheißen künftigen Quantensimulatoren enormes Potenzial, Einblicke in noch ungeklärte Phänomene der Quantenwelt zu geben.


Schematische Darstellung der Paarbindungen in einem quantenmechanischen Vierteilchen-System (Credit: Felice Frankel)

Selbst das Verhalten von relativ kleinen Quantensystemen kann mit herkömmlichen Computern mangels Rechenleistung nicht berechnet werden, weil ein Quantenzustand viel mehr Information enthält. Wird aber ein anderes Quantensystem als Quantensimulator verwendet, können Antworten über die Eigenschaften von dem komplexen Quantensystem gewonnen werden.

Frustrierte Quantensysteme als Ausgangspunkt für Quanteneffekte

Viele internationale Forschungsgruppen befassen sich mit der Quantensimulation von sogenannten frustrierten Quantensystemen – wenn konkurrierende Wechselwirkungen nicht gleichzeitig befriedigt werden können. "Sie sind Ausgangspunkt für Quanteneffekte wie zum Beispiel die Hochtemperatur-Supraleitung, bei der Elektronen ohne Widerstand fließen können", erklärt Anton Zeilinger, Professor für Quantenphysik an der Universität Wien und Direktor des Instituts für Quantenoptik und Quanteninformation der ÖAW. Der Quantenphysiker und das Forschungsteam mit Wissenschaftern aus China, Serbien, Neuseeland und Österreich konnten erstmalig Frustration bei der "Paarbildung" genau untersuchen.

Dynamiken simuliert

In der aktuellen Ausgabe der renommierten Zeitschrift "Nature Physics" publizieren sie zu der experimentellen Simulation eines frustrierten Quantensystems mithilfe zweier verschränkter Photonenpaare. "Erst seit kurzem ist unsere Quantentechnologie so weit fortgeschritten, dass wir nicht nur andere Quantensysteme nachbauen, sondern auch deren Dynamiken simulieren können", sagt Philip Walther, Verantwortlicher des Forschungsprojektes. "Wir können heutzutage quantenmechanisch präparierte Photonen gezielt verwenden, um Einblicke in andere Quantensysteme zu erhalten." Daher haben zwei in Polarisation verschränkte Photonen in vielerlei Hinsicht die gleichen quantenphysikalischen Eigenschaften wie Elektronenpaare in Materie.

Konflikt einzelner Quantenteilchen

In diesem Experiment stehen einzelne Quantenteilchen (Photonen) dem Konflikt gegenüber, sich mit nur einem Partner exklusiv paaren zu können, es aber mit mehreren zu wollen – z.B. ein Elektron, dessen Spin, vergleichbar mit einen Minimagneten, wegen seines rechten Nachbarn nach oben und wegen seines linken Nachbarn nach unten zeigen sollte. "Die Lösung für solche Situationen liefert nur die Quantenphysik, da ein Spin in gewissem Sinne beides sein kann in Form von Überlagerungen. Dies führt zur Frustration. Das Quantensystem greift in die 'Trickkiste' und erlaubt Quantenfluktuationen, sodass verschiedene, sich sonst ausschließende Paarbildungen als Superposition koexistieren können", so Walther. Somit bestätigt die Arbeit der Wiener Gruppe, dass Quantensimulation ein sehr gutes Mittel zur Berechnung von Quantenzuständen der Materie ist. Sie eröffnet den Weg zur Untersuchung weitaus komplexerer Situationen.

Über Verschränkung

Verschränkung ist eine Eigenschaft der Quantenmechanik, die nicht mit dem alltäglichen Verständnis der Welt vereinbar ist und kein Gegenstück in der klassischen Physik besitzt. Sind zwei Lichtteilchen (Photonen) miteinander verschränkt, bleiben sie über beliebig große Distanzen verbunden. Führt man eine Messung, z.B. des Polarisationszustandes, an einem der beiden Teilchen durch, ändert sich auf "spukhafte Weise" auch der Zustand des anderen Teilchens. Verschränkte Systeme liefern vollkommen neue Ansätze zur Informationsverarbeitung, etwa auch die Simulation von anderen Quantensystemen.

Publikation
Xiao-song Ma, Borivoje Dakic, William Naylor, Anton Zeilinger, Philip Walther: Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems. In: Nature Physics, Advanced Online Publication (AOP), 20 February 2011. DOI 10.1038/NPHYS1919.
Wissenschaftlicher Kontakt
Univ.-Ass. Dr. Philip Walther
Quantenoptik, Quantennanophysik und Quanteninformation
Fakultät für Physik
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-295 75
philip.walther@univie.ac.at
Rückfragehinweis
Mag. Ursula Gerber
Quantenoptik, Quantennanophysik und Quanteninformation
Fakultät für Physik
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-512 66
ursula.gerber@univie.ac.at

Veronika Schallhart | Universität Wien
Weitere Informationen:
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine Extra-Sekunde zum neuen Jahr
08.12.2016 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Heimcomputer entdecken rekordverdächtiges Pulsar-Neutronenstern-System
08.12.2016 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops