Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantensimulation mit Licht: Frustration bei der Paarbildung

22.02.2011
Quantensysteme werden als frustriert bezeichnet, wenn konkurrierende Wechselwirkungen nicht gleichzeitig befriedigt werden können.

Einem Forschungsteam der Universität Wien und des Instituts für Quantenoptik und Quanteninformation der ÖAW um Philip Walther und Anton Zeilinger gelang es, erstmals Quanteneffekte von komplexen Vielteilchensystemen zu simulieren. Die im Fachjournal "Nature Physics" veröffentlichten Ergebnisse verheißen künftigen Quantensimulatoren enormes Potenzial, Einblicke in noch ungeklärte Phänomene der Quantenwelt zu geben.


Schematische Darstellung der Paarbindungen in einem quantenmechanischen Vierteilchen-System (Credit: Felice Frankel)

Selbst das Verhalten von relativ kleinen Quantensystemen kann mit herkömmlichen Computern mangels Rechenleistung nicht berechnet werden, weil ein Quantenzustand viel mehr Information enthält. Wird aber ein anderes Quantensystem als Quantensimulator verwendet, können Antworten über die Eigenschaften von dem komplexen Quantensystem gewonnen werden.

Frustrierte Quantensysteme als Ausgangspunkt für Quanteneffekte

Viele internationale Forschungsgruppen befassen sich mit der Quantensimulation von sogenannten frustrierten Quantensystemen – wenn konkurrierende Wechselwirkungen nicht gleichzeitig befriedigt werden können. "Sie sind Ausgangspunkt für Quanteneffekte wie zum Beispiel die Hochtemperatur-Supraleitung, bei der Elektronen ohne Widerstand fließen können", erklärt Anton Zeilinger, Professor für Quantenphysik an der Universität Wien und Direktor des Instituts für Quantenoptik und Quanteninformation der ÖAW. Der Quantenphysiker und das Forschungsteam mit Wissenschaftern aus China, Serbien, Neuseeland und Österreich konnten erstmalig Frustration bei der "Paarbildung" genau untersuchen.

Dynamiken simuliert

In der aktuellen Ausgabe der renommierten Zeitschrift "Nature Physics" publizieren sie zu der experimentellen Simulation eines frustrierten Quantensystems mithilfe zweier verschränkter Photonenpaare. "Erst seit kurzem ist unsere Quantentechnologie so weit fortgeschritten, dass wir nicht nur andere Quantensysteme nachbauen, sondern auch deren Dynamiken simulieren können", sagt Philip Walther, Verantwortlicher des Forschungsprojektes. "Wir können heutzutage quantenmechanisch präparierte Photonen gezielt verwenden, um Einblicke in andere Quantensysteme zu erhalten." Daher haben zwei in Polarisation verschränkte Photonen in vielerlei Hinsicht die gleichen quantenphysikalischen Eigenschaften wie Elektronenpaare in Materie.

Konflikt einzelner Quantenteilchen

In diesem Experiment stehen einzelne Quantenteilchen (Photonen) dem Konflikt gegenüber, sich mit nur einem Partner exklusiv paaren zu können, es aber mit mehreren zu wollen – z.B. ein Elektron, dessen Spin, vergleichbar mit einen Minimagneten, wegen seines rechten Nachbarn nach oben und wegen seines linken Nachbarn nach unten zeigen sollte. "Die Lösung für solche Situationen liefert nur die Quantenphysik, da ein Spin in gewissem Sinne beides sein kann in Form von Überlagerungen. Dies führt zur Frustration. Das Quantensystem greift in die 'Trickkiste' und erlaubt Quantenfluktuationen, sodass verschiedene, sich sonst ausschließende Paarbildungen als Superposition koexistieren können", so Walther. Somit bestätigt die Arbeit der Wiener Gruppe, dass Quantensimulation ein sehr gutes Mittel zur Berechnung von Quantenzuständen der Materie ist. Sie eröffnet den Weg zur Untersuchung weitaus komplexerer Situationen.

Über Verschränkung

Verschränkung ist eine Eigenschaft der Quantenmechanik, die nicht mit dem alltäglichen Verständnis der Welt vereinbar ist und kein Gegenstück in der klassischen Physik besitzt. Sind zwei Lichtteilchen (Photonen) miteinander verschränkt, bleiben sie über beliebig große Distanzen verbunden. Führt man eine Messung, z.B. des Polarisationszustandes, an einem der beiden Teilchen durch, ändert sich auf "spukhafte Weise" auch der Zustand des anderen Teilchens. Verschränkte Systeme liefern vollkommen neue Ansätze zur Informationsverarbeitung, etwa auch die Simulation von anderen Quantensystemen.

Publikation
Xiao-song Ma, Borivoje Dakic, William Naylor, Anton Zeilinger, Philip Walther: Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems. In: Nature Physics, Advanced Online Publication (AOP), 20 February 2011. DOI 10.1038/NPHYS1919.
Wissenschaftlicher Kontakt
Univ.-Ass. Dr. Philip Walther
Quantenoptik, Quantennanophysik und Quanteninformation
Fakultät für Physik
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-295 75
philip.walther@univie.ac.at
Rückfragehinweis
Mag. Ursula Gerber
Quantenoptik, Quantennanophysik und Quanteninformation
Fakultät für Physik
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-512 66
ursula.gerber@univie.ac.at

Veronika Schallhart | Universität Wien
Weitere Informationen:
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie