Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts

01.12.2016

In der Natur sind Systeme, die sich außerhalb des thermodynamischen Gleichgewichts befinden, allgegenwärtig. Aufgrund ihrer Bedeutung sowohl für die Grundlagenphysik als auch für die moderne Nanotechnologie erfahren sie seit einigen Jahren eine stetig wachsende Bedeutung. Im Rahmen einer Zusammenarbeit von Forschern der AG Theoretische Optik und Photonik des Max-Born-Instituts und der Humboldt-Universität zu Berlin mit Kollegen der Universität Potsdam, der Yale University und dem Los Alamos National Laboratory ist es nun gelungen, detaillierte neue physikalische Einsichten zur Quantenreibung eines Atoms an einer (glatten) Oberfläche zu erhalten.

Dynamische van der Waals- bzw. Casimir-Kräfte zwischen Atomen, Molekülen und Oberflächen stellen eine spezielle Klasse solcher Nicht-Gleichgewichts-Phänomene dar. Diese Kräfte sind quantenmechanischen Ursprungs und bilden die Grundlage der (kontaktlosen) Quantenreibung, die immer dann auftritt, wenn sich zwei Objekte im Abstand von wenigen zehn Nanometern relativ zueinander bewegen.


Schematische Darstellung des Unterschieds zwischen der LTG-Näherung (a) und der vollen Nicht-Gleichgewichts-Beschreibung (b) der Quantenreibung. Im ersten Fall wird angenommen, dass das Atom und die Oberfläche separat im thermodynamischen Gleichgewicht mit der jeweiligen unmittelbaren Umgebung sind. Allerdings führen die Quanten-Korrelationen zwischen dem Atom und der Oberfläche (im Bild (b) durch die Wechselwirkungspfeile angedeutet) zum Zusammenbruch dieser Näherung, die die Stärke der Quantenreibung um ca. 80% unterschätzt.

Grafik: MBI

Allerdings stellt die detaillierte quantitative Beschreibung solcher Nicht-Gleichgewichts-Systeme eine nicht zu unterschätzende Herausforderung dar, so dass oft Näherungs-Verfahren zum Einsatz kommen, die auf der Annahme basieren, dass die Abweichungen von den Nicht-Gleichgewichts-Eigenschaften vergleichsweise klein sind. Und das geschieht sehr oft auch dann, wenn die Gültigkeit der Annahme sowie die zugehörigen approximativen Zugänge unzureichend getestet und in der Folge die Belastbarkeit der Ergebnisse nicht ausreichend gesichert sind.

Im krassen Gegensatz mit weithin anerkannten Annahmen, die auch die verfügbare Literatur dominieren, konnten die Forscher zeigen, dass die Annahme eines lokalen thermischen Gleichgewichts (LTG), welche die miteinander wechselwirkenden Teilsysteme eines allgemeinen Nicht-Gleichgewichts-Systems so behandelt, als wäre jedes für sich zunächst im thermischen Gleichgewicht mit der jeweils unmittelbaren Umgebung, im Falle der Quantenreibung dramatisch versagt.

Auf der Basis allgemein gültiger Aussagen der Quantenstatistik und exakt lösbarer Modelle, haben die Forscher nachgewiesen, dass die LTG-Näherung die Reibungskraft um ca. 80% unterschätzt. Da die LTG-Näherung das Arbeitspferd bei der Behandlung einer Vielzahl von Nicht-Gleichgewichts-Phänomenen ist, die vom thermischen Energietransport bis hin zu Nicht-Gleichgewichts-Dispersionskräften reicht, demonstrieren diese Ergebnisse, dass bisherige Rechnungen auf der Basis der LTG-Näherung einer strengen Rechtfertigung entbehren und daher überprüft werden müssen.

Neben der Beantwortung grundsätzlicher Fragen im stark interdisziplinären Feld der van der Waals/Casimir Kräfte, werden die Ergebnisse der Forscher beträchtliche Auswirkungen auf eine Vielzahl von Anwendungen im hoch-aktuellen Bereich der Nicht-Gleichgewichts-Physik haben, wie etwa bei miniaturisierten Fallen für ultra-kalte Gase (Atom Chips), nano-elektromechanischen Systemen (NEMS) und der Strahlungsübertragung im Nah-Feld. Dementsprechend liegt mit der vorliegenden Arbeit eine quantitative Analyse vor, deren Aussagen einen erheblichen Fortschritt für das Verständnis der Nicht-Gleichgewichts-Quantenphysik darstellen.

Originalpublikation: Phys. Rev. Lett. 117, 100402 (2016) DOI:10.1103/PhysRevLett.117.100402
"Failure of local thermal equilibrium in quantum friction",
F. Intravaia, R.O. Behunin, C. Henkel, K. Busch, and D.A.R. Dalvit

Kontakt
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie im Forschungsverbund Berlin e.V.
Max-Born-Straße 2 A
12489 Berlin
Dr. Francesco Intravaia,
phone: +49 30 6392 1261
mail: nabu@mbi-berlin.de

Weitere Informationen:

http://www.mbi-berlin.de

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Weniger (Flug-)Lärm dank Mathematik
21.09.2017 | Forschungszentrum MATHEON ECMath

nachricht Der stotternde Motor im Weltall
21.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften