Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenrechnung im Diamanten

30.01.2014
In einem Quantenregister aus Kernspins des Edelsteins sind eine logische Operation und eine Fehlerkorrektur gelungen

Computer müssen nicht fehlerfrei rechnen, um fehlerlose Ergebnisse zu liefern – sie müssen ihre Irrtümer nur zuverlässig korrigieren. Und das wird künftig noch wichtiger, wenn Quantencomputer mit sehr effizienten, aber auch recht störanfälligen Rechenprozessen manche Aufgaben um ein Vielfaches schneller lösen sollen als herkömmliche PCs.


Leuchtende Fehlstellen: Stickstoff-Verunreinigungen in einem Diamanten lassen sich mit grünem Licht anregen, sodass der Edelstein rot leuchtet. Der Diamant, an dem die Stuttgarter Forscher ihre Experimente machen, enthält außergewöhnlich wenige Stickstoff-Defekte. An einem einzelnen dieser Defekte, einem sogenannten NV-Zentrum, erzeugen die Stuttgarter Forscher ein Quantenregister. Darin demonstrieren sie die Fehlerkorrektur an einem Quantenbit.

© Universität Stuttgart

Ein internationales Team um Physiker der Universität Stuttgart und des Stuttgarter Max-Planck-Instituts für Festkörperforschung hat nun einen Weg gefunden, das Quantensystem eines Diamanten mit wenigen Stickstoffverunreinigungen besonders gut zu kontrollieren.

So können die Forscher Quantenbits, also die kleinsten Recheneinheiten eines Quantencomputers, in dem Diamanten gezielt ansprechen und mehrere Bits zu einem Rechenregister zusammenfassen. Den neuen Grad an Kontrolle nutzen sie für eine logische Operation, die für einen Quantencomputer essentiell ist, und für eine Fehlerkorrektur.

Wo die Stärken eines Quantencomputers lägen, wissen Physiker schon recht genau: vor allem die Suche in großen Datenbanken, Ver- und Entschlüsselungen oder die Forschungsaufgaben der Quantenphysik könnte er viel schneller erledigen als jeder heute denkbare klassische Computer. Wie der Bauplan eines Quantenrechners aussehen soll, ist dagegen noch ziemlich unklar. So gibt es derzeit auch noch keinen echten Favoriten unter den Materialien, aus denen Quantenprozessoren gemacht sein könnten. In Betracht kommen dafür etwa mit elektrischen Feldern gefangene Ionen, Atome in optischen Gittern, Bauelemente aus Supraleitern oder Diamanten, die durch winzige Mengen an Stickstoff verunreinigt sind.

Die sporadisch mit Stickstoff durchsetzten Diamanten erforschen die Physiker um Jörg Wrachtrup, Professor an der Universität Stuttgart und Fellow des Max-Planck-Instituts für Festkörperforschung, bereits seit längerem. Nun haben sie den Edelsteinen auf dem Weg zum Quantenrechner gleich über mehrere Hürden geholfen. Denn die Stuttgarter Forscher haben in einem Diamanten nicht nur ein Quantenregister und damit das Pendant zu einem klassischen Prozessor erzeugt. Sie können das Register auch zuverlässig steuern, eine logische Operation damit vornehmen und Fehler darin korrigieren. „Weil wir die Quantenmechanik unseres Systems inzwischen gut verstehen, können wir Quantenregister in einem ziemlich einfachen Ansatz schaffen, der im Gegensatz zu anderen Techniken ohne aufwendige Tieftemperaturtechnik oder Lasersysteme auskommt“, sagt Jörg Wrachtrup.

Ein Quantenregister befindet sich im Überlagerungszustand mehrerer Qubits

Ein Quantenregister umfasst immer einzelne Qubits (kurz für Quantenbits), die wie klassische Bits zwei Zustände einnehmen können, um eine Null oder Eins zu codieren. Anders als klassische Bits lassen sich mehrere Qubits jedoch in Überlagerungszustände bringen, in denen jedes einzelne quasi zwischen der „Null“ und der „Eins“ schwebt. So ergeben sich verschiedene Ausprägungen für jeden Überlagerungszustand, die im Quantenregister als Möglichkeiten enthalten sind. Diese Möglichkeiten lassen sich für manche parallele Rechnungen nutzen wie die Bits eines klassischen Computers.

Je mehr Quantenbits in einem Register zusammengespannt werden, desto leistungsfähiger, aber auch empfindlicher ist der Prozessor. Denn äußere Störungen stoßen ein Qubit nur zu leicht aus dem Schwebezustand zwischen „Eins“ und „Null“ hin zu einer der beiden Optionen. So zerstören unerwünschte Einflüsse von außen schlimmstenfalls die filigrane Überlagerung und machen sie somit unbrauchbar für parallele Rechnungen. Dagegen haben die Stuttgarter Forscher nun ein Mittel gefunden.

Drei Kernspins werden über einen Defekt zum Register vereint

Als Quantenbits nutzen sie zwei Kohlenstoffatome des Schweren Isotops 13C und ein Stickstoffatom. Diese Atome weisen jeweils einen Kernspin auf, der in einem Magnetfeld zwei Orientierungen annehmen kann und sich mit Radiofrequenzpulsen manipulieren lässt. Die Ausrichtung der Kernspins ermöglicht im Magnetresonanztomografen Einblicke in den menschlichen Köper, wird im Qubit jedoch verwendet, um die „Null“ oder „Eins“ eines Bits abzulegen. Fehlt noch eine Steuereinheit, mit denen die Stuttgarter Forscher die Quantenbits kontrollieren und zu einem Register vereinen können. Da kommt die Unregelmäßigkeit im Atomgitter des Diamanten ins Spiel, für die ein Stickstoffatom sorgt.

Der Stickstoffdefekt – die Physiker sprechen von einem NV-Zentrum (NV: nitrogen-vacancy, englisch für Stickstoff-Leerstelle) – kann zur Falle für ein einzelnes Elektron werden. Ein Elektron besitzt ebenfalls einen Spin, dessen Orientierung sich auf die Ausrichtung der Kernspins auswirkt. Der Elektronenspin lässt sich schneller schalten als die Kernspins, ist aber störanfälliger. Er dient den Forschern Sprachrohr für Steuerbefehle an die Kernspins, die sich mit Radiofrequenzpulsen nicht rüberbringen lassen. Das Elektron im Defekt vermittelt so die Kommunikation zwischen den Kernspins im Quantenregister. Schließlich dient es den Physikern als Lesehilfe für die Kernspins.

Ein Quantenregister mit schnellem Schalter und robustem Speicher

„Bisher hat man das Elektron des NV-Zentrums auch als Speicher herangezogen, um das Quantenregister zu vergrößern“, sagt Gerald Waldherr, der an den Experimenten maßgeblich beteiligt war. „Wir verwenden das Elektron ausschließlich zur Kontrolle der Kernspins, auf denen die Quanteninformation gespeichert ist.“ So können die Forscher die Vorteile beider Systeme voll nutzen: Über einen Elektronenspin lässt sich ein Quantenregister schnell schalten. Die Kernspins speichern Information dagegen relativ zuverlässig, weil sie recht robust gegenüber Störungen sind.

Mit einer geschickten Kombination aus Licht- und Radiofrequenzpulsen bugsieren die Physiker die drei Kernspins, vermittelt durch den Elektronenspin, also zunächst in einen Überlagerungszustand: Sie verschränken die Kernspins. Die quantenmechanische Verschränkung schafft eine Art virtueller Verbindung zwischen Quantenteilchen, sodass diese von einander wissen. Nur verschränkte Systeme taugen als Quantenregister, weil nur sie die parallele Arbeitsweise des Quantenrechners erlauben.

Ein CNOT-Gatter ermöglicht weitere Rechenoperationen

Dass in dem Quantenregister logische Operationen möglich sind, zeigten die Forscher im nächsten Schritt, und zwar mit dem CNOT-Gatter – einer logischen Verknüpfung, die für Quantencomputer besonders wichtig ist. „Mit dem CNOT-Gatter und lokalen Operationen an den einzelnen Qubits, kann man alle anderen Operationen realisieren“, erklärt Gerald Waldherr. Das CNOT-Gatter schaltet ein Bit abhängig von einem zweiten. Stellt letzteres also zum Beispiel eine „Eins“ dar, wird ersteres von „Null“ auf „Eins“ gesetzt oder umgekehrt. Dieses bleibt dagegen unverändert, wenn jenes auf der „Null“ steht. Genau diese Operation nahmen die Stuttgarter Forscher an den Kernspins in ihrem Register vor, indem sie eine Folge verschiedener Radiofrequenzpulse auf das NV-Zentrum beziehungsweise die Kernspins schickten.

Das CNOT-Gatter ist aber nicht nur unerlässlich für die Rechenkraft eines Quantencomputers, es ermöglicht auch die Fehlerkorrektur. Denn obwohl Kernspins nicht so empfindlich gegenüber Störungen sind wie Elektronenspins, unantastbar sind sie beileibe nicht. Wie sich mögliche Irrtümer im Quantenregister rückgängig machen lassen, demonstrierten Gerald Waldherr und seine Kollegen an einem der möglichen Überlagerungszustände ihres Quantenregisters.

Für die Fehlerkorrektur kommt den Wissenschaftlern zugute, dass es sich bei den Überlagerungszuständen nicht um wahllose Kombinationen aller möglichen Spinstellungen handelt. In einem dieser Überlagerungszustände nehmen vielmehr alle Qubits die „Eins“ ein oder die „Null“. In einem anderen stehen immer zwei auf der „Eins“. Fehler fallen da sofort auf. Und anhand der beiden unversehrten Qubits lässt sich der ursprüngliche Zustand des dritten rekonstruieren. Die CNOT-Operation ist dafür das Mittel der Wahl, weil sie ein Bit in Abhängigkeit von einem anderen schaltet. So zeigt eine ausgeklügelte Folge von CNOT-Operationen an den drei Qubits des Quantenregisters nicht nur, ob ein Bit vom charakteristischen Muster des jeweiligen Überlagerungszustandes abweicht, sie korrigiert den Irrtum auch gleich.

Die Zahl der Qubits im Rechenregister soll steigen

„Mit der aktuellen Arbeit zeigen wir, dass die Defektzentren in den Diamanten wesentlich vielseitiger sind als wir ursprünglich dachten“, sagt Jörg Wrachtrup. „Die neuen Ergebnisse haben wir dabei vor allem durch ein besseres Verständnis der Defekte erzielt und nicht, indem wir viel in das Material investieren.“

Auf pfiffige Ideen setzen die Forscher auch künftig, wenn es darum geht, die Aussichten der Diamanten in der Konkurrenz um das brauchbarste Quantenregister weiter zu verbessern. Zunächst wollen sie die Zahl der Qubits in ihrem Register erhöhen. Zu dem Zweck wollen sie Kernspins integrieren, denen die Kommunikation zum Elektron schwerer fällt als den drei Spins ihres aktuellen Rechenregisters. Ausweiten könnten sie das Quantenregister aber auch, wenn es ihnen gelänge, mehrere NV-Zentren zu verschränken und auf die jeweiligen Kernspins in der Nähe der einzelnen Zentren zuzugreifen. Damit hätten sie auch die Kernspins, die von den einzelnen Defekten kontrolliert werden, vernetzt. Dann näherte sich das Quantenregister allmählich einer Größe, mit der es klassischen Prozessoren bei manchen Rechenaufgaben tatsächlich den Rang ablaufen könnte.

Ansprechpartner

Gerald Waldherr
Universität Stuttgart
Telefon: +49 711 685-65229
E-Mail: g.waldherr@physik.uni-stuttgart.de
Prof. Dr. Jörg Wrachtrup
Fellow am Max-Planck-Institut für Festkörperforschung
Universität Stuttgart
Telefon: +49 711 685-65278
E-Mail: j.wrachtrup@fkf.mpg.de
Originalpublikation
Gerald Waldherr, Ya Wang, Sebastian Zaiser, Mohammad Jamali, Thomas Schulte-Herbrüggen, Hiroshi Abe, Takeshi Ohshima, Junichi Isoya, Jiangfeng Du, Philipp Neumann und Jörg Wrachtrup

Quantum error correction in a solid-state hybrid spin register

Nature Advance Online Publication, 29. Januar 2014; doi:10.1038/nature12919

Gerald Waldherr | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7868999/quantencomputer_quantenregister_diamant

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MAIUS-1 – erste Experimente mit ultrakalten Atomen im All
24.01.2017 | Leibniz Universität Hannover

nachricht European XFEL: Forscher können erste Vorschläge für Experimente einreichen
24.01.2017 | European XFEL GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie