Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenpunkte lassen Eiweißfasern leuchten

04.03.2011
Materialwissenschaftler der Universität Jena erschaffen neues biophotonisches Hybridmaterial

In der Natur findet sie seit Milliarden von Jahren statt: die Selbstorganisation von Molekülen. Aus einfachen Bausteinen entstehen „wie von selbst“ komplexe, geordnete Strukturen. Die treibende Kraft für dieses Phänomen ist physikalischer Natur: Die sogenannten Van-der-Waals-Kräfte zwingen die Moleküle, sich zu ordnen.


Extrem dünne Eiweiß-Fasern aus Fibronektin lassen sich durch die Kombination mit Quantenpunkten zum Leuchten bringen. Foto: AG Jandt/FSU

Materialwissenschaftler der Friedrich-Schiller-Universität Jena nutzen jetzt die Selbstorganisationsfähigkeiten von Molekülen, um aus dem Eiweiß Fibronektin Nanofasern zu erzeugen. Im menschlichen Körper nimmt Fibronektin eine Reihe wichtiger Funktionen wahr: Es dient als „Kittsubstanz“ zwischen Köperzellen und spielt eine entscheidende Rolle bei der Blutgerinnung.

„Auch beim Gewebewachstum auf Implantaten ist Fibronektin ein wichtiger Faktor“, erläutert Prof. Dr. Klaus D. Jandt vom Institut für Materialwissenschaft und Werkstofftechnologie (IMT) der Universität Jena. Wie der Materialwissenschaftler und sein Team jetzt in der aktuellen Ausgabe der britischen Fachzeitschrift „Soft Matter“ berichten, ist es ihnen gelungen, extrem dünne und lange Eiweiß-Fasern aus Fibronektin zu erzeugen und diese durch die Kombination mit sogenannten Quantenpunkten zum Leuchten zu bringen.

Das so entstandene neue Hybridmaterial sei beispielweise dafür geeignet, Prozesse an Grenzflächen zwischen künstlichen Materialien und lebenden Zellen sichtbar zu machen oder als Baustein für neue Implantatmaterialien, erläutert Prof. Jandt sein Interesse an diesen neuartigen Strukturen.

Die von den Jenaer Materialwissenschaftlern hergestellten Fasern sind nur etwa zwei Nanometer (zwei Millionstel Millimeter) dick – das entspricht einem 25.000stel der Dicke eines menschlichen Haares. In ihren Experimenten konnten die Forscher erstmals die Selbstorganisation von Fibronektin zu Nanofasern in Lösung beobachten. In einem anschließenden Schritt haben sie sogenannte Quantenpunkte so verändert, dass sich diese entlang der Nanofasern fest anhefteten. Dabei handelt es sich um winzige Materialstrukturen z. B. aus Halbleitern, die definierte optische und elektronische Eigenschaften haben und etwa als Sonden eingesetzt werden. So wie an den Fibronektin-Nanofasern: Bestrahlt mit Laser-Licht beginnen die Quantenpunkte zu leuchten und machen die Nanofasern indirekt sichtbar. „Wie eine beleuchtete Straße bei Nacht, die man aus dem Flugzeug beobachtet“, beschreibt Prof. Jandt das Phänomen. „Unsere Ergebnisse unterstreichen das hohe Potenzial, das diese neuen biophotonischen Hydbridmaterialien als Baustein in der Materialwissenschaft und als photonische Sonden in der Biophysik haben“.

Originalpublikation:
Gang Wei, Thomas F. Keller, Jiantao Zhang and Klaus D. Jandt: Novel 1-D biophotonic nanohybrids: protein nanofibers meet quantum dots, Soft Matter 2011 DOI: 10.1039/c0sm01037e

Die Publikation ist nachzulesen unter: http://pubs.rsc.org/en/Content/ArticlePDF/2011/SM/C0SM01037E

Kontakt:
Prof. Dr. Klaus D. Jandt
Institut für Materialwissenschaft und Werkstofftechnologie der Universität Jena
Löbdergraben 32, 07743 Jena
Tel.: 03641 / 947730
E-Mail: k.jandt[at]uni-jena.de

Dr. Ute Schönfelder | Uni Jena
Weitere Informationen:
http://www.uni-jena.de
http://pubs.rsc.org/en/Content/ArticlePDF/2011/SM/C0SM01037E

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Maschinelles Lernen im Quantenlabor
19.01.2018 | Universität Innsbruck

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie