Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenpunkte aus Indiumarsenid für flinke Prozessoren

28.07.2011
Wissenschaftler des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) können Quantenpunkte aus Indiumarsenid auf Silizium-Wafern erzeugen.

Das Besondere: Sie verwenden dabei Verfahren, die schon jetzt in der Halbleiterfertigung eingesetzt werden. Die Material-Kombination könnte zu leistungsfähigeren Chips führen, die zudem neue Möglichkeiten in der Optoelektronik bieten.


Die Aufnahme mit einem Rasterelektronen-Mikroskop zeigt Quantenpunkte aus Indiumarsenid
HZDR

In der Halbleiterindustrie gilt das sogenannte Moore’sche Gesetz. Es gibt den Takt vor, in dem die Leistungsfähigkeit von Prozessoren zunimmt: Alle 18 Monate verdoppelt sich die Zahl der Transistoren, die auf einem Computerchip untergebracht werden können. Allerdings stößt die herkömmliche Fertigungstechnik allmählich an ihre Grenzen, und es wird immer schwieriger, die Miniaturisierung voranzutreiben. Daher suchen Forscher weltweit nach Wegen, das Leistungsvermögen von Chips auf anderem Wege zu steigern. Als eine Alternative gilt die Integration von sogenannten III-V-Halbleitern, wie sie nun Slawomir Prucnal und Wolfgang Skorupa gemeinsam mit ihren Kollegen vom HZDR gelungen ist.

„Indiumarsenid besitzt eine extrem hohe Elektronenbeweglichkeit“, erklärt Slawomir Prucnal, Postdoktorand von der Marie Curie-Sklodowska Universität in Lublin. Die Elektronen flitzen 30-mal schneller durch das Material als in einem Silizium-Wafer. Man kann also viel schnellere Bauteile erhalten. „Außerdem reicht eine geringere Betriebsspannung“, ergänzt Wolfgang Skorupa, Leiter der Abteilung Halbleitermaterialien im HZDR. „Das senkt den Stromverbrauch und führt zu deutlich geringeren Wärmeverlusten.“ Die Quantenpunkte aus Indiumarsenid werden am HZDR als winzige Pyramiden – Kantenlängen zwischen 40 und 80 Nanometern – auf freistehenden Siliziumsäulen erzeugt. Legt man an diese Anordnung eine Spannung an, verhält sie sich wie eine Diode.

Das Halbleitermaterial Indiumarsenid ermöglicht nicht nur höhere Taktfrequenzen und stromsparende Transistoren, sondern kann vor allem auch in der Optoelektronik genutzt werden. Denn die III-V-Halbleiter sind gute Werkstoffe für effiziente Laser. Überträgt man die Signale zwischen und auf den Chips nicht mehr elektrisch, sondern optisch, sind bedeutend schnellere Übertragungsraten möglich. Daher testen die Wissenschaftler am HZDR nun weitere Halbleiterverbindungen wie Indiumphosphid und Galliumarsenid, die Licht mit kürzerer Wellenlänge abstrahlen und daher noch besser als Indiumarsenid für photonische Anwendungen geeignet sind. Die Ergebnisse der bisherigen Versuche wurden in der Fachzeitschrift Nano Letters veröffentlicht (doi: 10.1021/nl201178d).

III-V-Halbleiter wie Indiumarsenid bestehen jeweils aus einem Element der dritten Gruppe des Periodensystems und einem der fünften. Die Kombination dieser Materialien mit Silizium gilt als sehr vielversprechend für die Mikroelektronik und ist daher schon länger Ziel verschiedener Forschungsaktivitäten. Bislang wurden solche Strukturen allerdings durch die sogenannte Molekularstrahlepitaxie erzeugt, bei der man die Fremdstoffe auf den Wafer quasi aufdampft. Dieser Prozess ist nicht kompatibel mit den üblichen Fertigungsverfahren der Halbleiter-Industrie und kann daher nicht ohne weiteres adaptiert werden.

Zur Herstellung der Quantenpunkte aus Indiumarsenid verwenden die Wissenschaftler Ionenbeschleuniger, die in der Chipfertigung beispielsweise auch beim Dotieren eingesetzt werden. Mit diesen Geräten implantieren sie Arsen- und Indium-Ionen in die Oberfläche des Siliziums. In einem zweiten Schritt sorgen die Forscher durch Blitzlampenausheilung dafür, dass sich die Ionen zu winzigen Inseln zusammenlagern. Zunächst erwärmen sie den Silizium-Wafer auf etwa 700 Grad, um mechanische Spannungen auszuschließen. Dann werden für 20 Millisekunden leistungsstarke Xenonlampen eingeschaltet, die die Scheibe auf 1.200 Grad erhitzen. „Diese Temperatur liegt oberhalb des Schmelzpunktes von Indiumarsenid“, erläutert Slawomir Prucnal. „Ein kurzer Blitz genügt, und die Nanopyramiden kristallisieren mittels Flüssigphasenepitaxie von selbst im Silizium“.

Beim letzten Prozessschritt werden diese Pyramiden freigelegt. Dazu ätzt man die Oberfläche des Wafers mit Kaliumhydroxid. Weil Indiumarsenid von der Lauge nicht angegriffen wird, können die Forscher auf eine Maske verzichten. Lediglich das Silizium wird durch das Kaliumhydroxid abgetragen, sodass am Ende die Quantenpunkte aus Indiumarsenid auf kleinen Siliziumsäulen, die etwa 100 Nanometer hoch sind, übrig bleiben.

(Text: Uta Bilow, Freie Wissenschaftsjournalistin)

Publikation
Slawomir Prucnal u.a., “n-InAs Nanopyramids Fully Integrated into Silicon“, in: Nano Letters, 2011, 11 (7), Seiten 2814–2818 (doi: 10.1021/nl201178d).
Weitere Informationen
Dr. Slawomir Prucnal
Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel. +49 351 260 – 2065
E-Mail: s.prucnal@hzdr.de
Dr. Wolfgang Skorupa
Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel. +49 351 260 – 3612
E-Mail: w.skorupa@hzdr.de
Pressekontakt
Dr. Christine Bohnet | Presseprecherin
Tel. 0351 260-2450 oder 0160 969 288 56
c.bohnet@hzdr.de | http;//www.hzdr.de
Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) hat das Ziel, langfristig ausgerichtete Spitzenforschung auf gesellschaftlich relevanten Gebieten zu leisten. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie verhält sich Materie unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
• Wie können Tumorerkrankungen frühzeitig erkannt und wirksam behandelt werden?
• Wie nutzt man Ressourcen und Energie effizient und sicher?
Zur Beantwortung dieser wissenschaftlichen Fragen werden sechs Großgeräte mit teils einmaligen Experimentiermöglichkeiten eingesetzt, die auch externen Nutzern zur Verfügung stehen.

Das HZDR ist seit 2011 Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte in Dresden, Freiberg, Leipzig und Grenoble und beschäftigt rund 800 Mitarbeiter – davon 380 Wissenschaftler inklusive 120 Doktoranden.

Dr. Christine Bohnet | Helmholtz-Zentrum
Weitere Informationen:
http://www.hzdr.de
http://pubs.acs.org/doi/abs/10.1021/nl201178d

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erforschung von Elementarteilchen in Materialien
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau