Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenpunkte aus Indiumarsenid für flinke Prozessoren

28.07.2011
Wissenschaftler des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) können Quantenpunkte aus Indiumarsenid auf Silizium-Wafern erzeugen.

Das Besondere: Sie verwenden dabei Verfahren, die schon jetzt in der Halbleiterfertigung eingesetzt werden. Die Material-Kombination könnte zu leistungsfähigeren Chips führen, die zudem neue Möglichkeiten in der Optoelektronik bieten.


Die Aufnahme mit einem Rasterelektronen-Mikroskop zeigt Quantenpunkte aus Indiumarsenid
HZDR

In der Halbleiterindustrie gilt das sogenannte Moore’sche Gesetz. Es gibt den Takt vor, in dem die Leistungsfähigkeit von Prozessoren zunimmt: Alle 18 Monate verdoppelt sich die Zahl der Transistoren, die auf einem Computerchip untergebracht werden können. Allerdings stößt die herkömmliche Fertigungstechnik allmählich an ihre Grenzen, und es wird immer schwieriger, die Miniaturisierung voranzutreiben. Daher suchen Forscher weltweit nach Wegen, das Leistungsvermögen von Chips auf anderem Wege zu steigern. Als eine Alternative gilt die Integration von sogenannten III-V-Halbleitern, wie sie nun Slawomir Prucnal und Wolfgang Skorupa gemeinsam mit ihren Kollegen vom HZDR gelungen ist.

„Indiumarsenid besitzt eine extrem hohe Elektronenbeweglichkeit“, erklärt Slawomir Prucnal, Postdoktorand von der Marie Curie-Sklodowska Universität in Lublin. Die Elektronen flitzen 30-mal schneller durch das Material als in einem Silizium-Wafer. Man kann also viel schnellere Bauteile erhalten. „Außerdem reicht eine geringere Betriebsspannung“, ergänzt Wolfgang Skorupa, Leiter der Abteilung Halbleitermaterialien im HZDR. „Das senkt den Stromverbrauch und führt zu deutlich geringeren Wärmeverlusten.“ Die Quantenpunkte aus Indiumarsenid werden am HZDR als winzige Pyramiden – Kantenlängen zwischen 40 und 80 Nanometern – auf freistehenden Siliziumsäulen erzeugt. Legt man an diese Anordnung eine Spannung an, verhält sie sich wie eine Diode.

Das Halbleitermaterial Indiumarsenid ermöglicht nicht nur höhere Taktfrequenzen und stromsparende Transistoren, sondern kann vor allem auch in der Optoelektronik genutzt werden. Denn die III-V-Halbleiter sind gute Werkstoffe für effiziente Laser. Überträgt man die Signale zwischen und auf den Chips nicht mehr elektrisch, sondern optisch, sind bedeutend schnellere Übertragungsraten möglich. Daher testen die Wissenschaftler am HZDR nun weitere Halbleiterverbindungen wie Indiumphosphid und Galliumarsenid, die Licht mit kürzerer Wellenlänge abstrahlen und daher noch besser als Indiumarsenid für photonische Anwendungen geeignet sind. Die Ergebnisse der bisherigen Versuche wurden in der Fachzeitschrift Nano Letters veröffentlicht (doi: 10.1021/nl201178d).

III-V-Halbleiter wie Indiumarsenid bestehen jeweils aus einem Element der dritten Gruppe des Periodensystems und einem der fünften. Die Kombination dieser Materialien mit Silizium gilt als sehr vielversprechend für die Mikroelektronik und ist daher schon länger Ziel verschiedener Forschungsaktivitäten. Bislang wurden solche Strukturen allerdings durch die sogenannte Molekularstrahlepitaxie erzeugt, bei der man die Fremdstoffe auf den Wafer quasi aufdampft. Dieser Prozess ist nicht kompatibel mit den üblichen Fertigungsverfahren der Halbleiter-Industrie und kann daher nicht ohne weiteres adaptiert werden.

Zur Herstellung der Quantenpunkte aus Indiumarsenid verwenden die Wissenschaftler Ionenbeschleuniger, die in der Chipfertigung beispielsweise auch beim Dotieren eingesetzt werden. Mit diesen Geräten implantieren sie Arsen- und Indium-Ionen in die Oberfläche des Siliziums. In einem zweiten Schritt sorgen die Forscher durch Blitzlampenausheilung dafür, dass sich die Ionen zu winzigen Inseln zusammenlagern. Zunächst erwärmen sie den Silizium-Wafer auf etwa 700 Grad, um mechanische Spannungen auszuschließen. Dann werden für 20 Millisekunden leistungsstarke Xenonlampen eingeschaltet, die die Scheibe auf 1.200 Grad erhitzen. „Diese Temperatur liegt oberhalb des Schmelzpunktes von Indiumarsenid“, erläutert Slawomir Prucnal. „Ein kurzer Blitz genügt, und die Nanopyramiden kristallisieren mittels Flüssigphasenepitaxie von selbst im Silizium“.

Beim letzten Prozessschritt werden diese Pyramiden freigelegt. Dazu ätzt man die Oberfläche des Wafers mit Kaliumhydroxid. Weil Indiumarsenid von der Lauge nicht angegriffen wird, können die Forscher auf eine Maske verzichten. Lediglich das Silizium wird durch das Kaliumhydroxid abgetragen, sodass am Ende die Quantenpunkte aus Indiumarsenid auf kleinen Siliziumsäulen, die etwa 100 Nanometer hoch sind, übrig bleiben.

(Text: Uta Bilow, Freie Wissenschaftsjournalistin)

Publikation
Slawomir Prucnal u.a., “n-InAs Nanopyramids Fully Integrated into Silicon“, in: Nano Letters, 2011, 11 (7), Seiten 2814–2818 (doi: 10.1021/nl201178d).
Weitere Informationen
Dr. Slawomir Prucnal
Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel. +49 351 260 – 2065
E-Mail: s.prucnal@hzdr.de
Dr. Wolfgang Skorupa
Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel. +49 351 260 – 3612
E-Mail: w.skorupa@hzdr.de
Pressekontakt
Dr. Christine Bohnet | Presseprecherin
Tel. 0351 260-2450 oder 0160 969 288 56
c.bohnet@hzdr.de | http;//www.hzdr.de
Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) hat das Ziel, langfristig ausgerichtete Spitzenforschung auf gesellschaftlich relevanten Gebieten zu leisten. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie verhält sich Materie unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
• Wie können Tumorerkrankungen frühzeitig erkannt und wirksam behandelt werden?
• Wie nutzt man Ressourcen und Energie effizient und sicher?
Zur Beantwortung dieser wissenschaftlichen Fragen werden sechs Großgeräte mit teils einmaligen Experimentiermöglichkeiten eingesetzt, die auch externen Nutzern zur Verfügung stehen.

Das HZDR ist seit 2011 Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte in Dresden, Freiberg, Leipzig und Grenoble und beschäftigt rund 800 Mitarbeiter – davon 380 Wissenschaftler inklusive 120 Doktoranden.

Dr. Christine Bohnet | Helmholtz-Zentrum
Weitere Informationen:
http://www.hzdr.de
http://pubs.acs.org/doi/abs/10.1021/nl201178d

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise