Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenprozessor für einzelne Photonen

07.07.2016

MPQ-Wissenschaftler realisieren Photon-Photon-Logikgatter über deterministische Wechselwirkung mit einem stark gekoppelten Atom-Resonator-System.

„Geht nicht – gibt’s nicht!“ Nach dieser Devise haben es Physiker aus der Abteilung Quantendynamik von Prof. Gerhard Rempe (Direktor am Max-Planck-Institut für Quantenoptik) geschafft, ein Quantenlogikgatter zu realisieren, in dem zwei Lichtquanten die entscheidenden Akteure sind.


Illustration der beim Logikgatter zwischen zwei Photonen ablaufenden Prozesse: die Photonen (blau) treffen nacheinander von rechts auf den teildurchlässigen Spiegel eines Resonators, in dem ein einzelnes Rubidiumatom (symbolisiert durch rotes Kügelchen mit gelben Elektronenorbitalen) gespeichert ist. Das Atom im Resonator spielt die Rolle eines Mediators, der zwischen den zwei Photonen eine deterministische Wechselwirkung vermittelt. Das Schema im Hintergrund fasst das vollständige Gatterprotokoll zusammen.

Grafik: Stephan Welte, MPQ, Abteilung Quantendynamik

Die Schwierigkeit bei solchen Vorhaben liegt darin, dass Photonen normalerweise nicht in Wechselwirkung miteinander treten, d.h. sie durchdringen einander ungestört. Das macht sie ideal für die Übertragung von Quanteninformation, jedoch weniger geeignet für deren Verarbeitung. Diese scheinbar unüberwindbare Hürde haben die Wissenschaftler ausgetrickst, indem sie ein drittes Teilchen hilfsweise ins Spiel kommen lassen: ein einzelnes in einem optischen Resonator gefangenes Atom, das die Rolle eines Mediators übernimmt.

„Das Besondere bei unserer Gatterimplementierung ist, dass die Wechselwirkung zwischen den Photonen deterministisch ist“, erklärt Dr. Stephan Ritter. „Dies ist essentiell für zukünftige, komplexere Anwendungen, wie skalierbare Quantencomputer oder globale Quantennetzwerke." (Nature, Advance Online Publication, 6. Juli 2016, DOI: 10.1038/nature18592).

In allen modernen Computern basiert die Datenverarbeitung darauf, dass Informationen zunächst binär kodiert und dann mit Hilfe logischer Operationen verarbeitet werden. Dies erfolgt mit sogenannten Logikgattern, die bestimmten Eingangswerten über deterministische Protokolle eindeutig Ausgangswerte zuordnen. Auch für die Verarbeitung von Informationen in Quantencomputern sind quantenmechanische Logikgatter die Schlüsselbausteine.

Für die Realisierung eines universellen Quantencomputers ist es dabei erforderlich, dass jedes Eingangsquantenbit eine maximale Veränderung der anderen Quantenbits bewirken kann. Die praktische Schwierigkeit liegt in der besonderen Natur von Quanteninformation: im Unterschied zu klassischen Bits kann sie nicht kopiert werden, klassische Methoden der Fehlerkorrektur scheiden also aus. Das Gatter muss daher bei jedem einzelnen Photon, das Information überträgt, funktionieren.

Wegen der besonderen Bedeutung von Photonen als Informationsträger – z.B. für die Kommunikation von Quanteninformation in ausgedehnten Quantennetzwerken – wird seit langem darüber geforscht, wie ein deterministisches Photon-Photon-Gatter zu realisieren wäre. Eine von mehreren Möglichkeiten, photonische Quantenbits zu kodieren, ist die Verwendung des Polarisationszustandes einzelner Photonen.

Hierbei entsprechen die Zustände „0“ und „1“, die ein klassisches Bit annehmen kann, zwei orthogonalen Polarisationszuständen. Im Gatter kann die Polarisation eines jeden Photons die des jeweils anderen beeinflussen. Welche Eingangspolarisationen zu welchen Ausgangspolarisationen führen, ist dabei wie beim klassischen Logikgatter von vorneherein festgelegt.

So wird zum Beispiel die lineare Polarisation des zweiten Photons um 90° gedreht, wenn das erste im logischen Zustand „1“ ist, und unverändert gelassen, sollte das erste „0“ sein. Im Gegensatz zu klassischen Logikgattern, die durch eine solche Beschreibung schon vollständig festgelegt wären, gibt es für Quantengatter hingegen eine unendliche Anzahl von möglichen Eingangszuständen. Für jedes muss das Quantenlogikgatter die eine richtige Kombination an Ausgangszuständen erzeugen.

In dem hier beschriebenen Experiment treffen zwei unabhängig voneinander kodierte Photonen kurz nacheinander von außen auf einen Resonator, der aus zwei Spiegeln höchster Güte gebildet wird. In seinem Zentrum wird ein einzelnes Rubidiumatom festgehalten, das mit dem Resonator ein stark gekoppeltes System bildet. Der Resonator verstärkt das Lichtfeld des von außen kommenden Photons am Ort des Atoms so stark, dass eine direkte Wechselwirkung möglich wird. Daher wird der Zustand des Atoms von dem Photon beeinflusst, und zwar genau dann, wenn dieses am Spiegel reflektiert wird. Diesen veränderten Zustand des Atoms spürt nun das zweite auf den Resonator treffende Photon.

Beide Photonen werden nach der Reflexion in einer 1,2 Kilometer langen Glasfaser für einige Mikrosekunden gespeichert. Währenddessen wird der atomare Zustand gemessen. Eine darauf konditionierte Polarisationsdrehung am ersten Photon ermöglicht die Rückwirkung des zweiten Photons auf das erste. „Die beiden Photonen sind nie zur gleichen Zeit am gleichen Ort, sehen sich also überhaupt nicht. Trotzdem erzielen wir maximale Wechselwirkung zwischen ihnen“, erklärt Bastian Hacker, Doktorand am Experiment.

Die Wissenschaftler konnten mit ihren Experimenten bestätigen, dass je nach Wahl der Polarisation für die beiden einlaufenden Photonen entweder das erste Photon das zweite beeinflusst, oder umgekehrt. Mit Hilfe einer Reihe von Messungen, bei denen die Werte der beiden auslaufenden Photonen bestimmt wurden, erstellten sie „Wahrheitstabellen“, welche den Erwartungen für bestimmte Gatteroperationen entsprechen und damit die verschiedenen Operationsmodi des Photon-Photon-Gatters demonstrieren.

Von besonderem Interesse ist der Fall, wenn die Eingangspolarisation der Photonen so eingestellt ist, dass sie sich gegenseitig beeinflussen. Dann befinden sich die beiden auslaufenden Photonen in einem verschränkten Zustand. „Diese Möglichkeit der Verschränkungserzeugung unterscheidet ein Quantengatter grundlegend von seinem klassischen Gegenstück“, erläutert Stephan Welte, Doktorand am Experiment. „Verschränkte Photonen können zum Beispiel für die Teleportation von Quantenzuständen genutzt werden.“

Die Wissenschaftler können sich vorstellen, dass mit dem neuen Photon-Photon-Gatter in Zukunft eine rein optische Quanteninformationsverarbeitung möglich wird. „Die Verteilung der Photonen über ein optisches Quantennetzwerk würde den Anschluss beliebig vieler Knoten und damit den Aufbau eines skalierbaren optischen Quantencomputers ermöglichen, bei dem das Photon-Photon-Gatter als zentrale Recheneinheit (CPU) dient“, erläutert Prof. Gerhard Rempe. Olivia Meyer-Streng

Originalveröffentlichung:

Bastian Hacker, Stephan Welte, Gerhard Rempe, and Stephan Ritter
A photon-photon quantum gate based on a single atom in an optical resonator
Nature, Advance Online Publication, 6 July 2016, DOI: 10.1038/nature18592

Kontakt:

Prof. Dr. Gerhard Rempe
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 701
E-Mail: gerhard.rempe@mpq.mpg.de

Dr. Stephan Ritter
Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 - 728
E-Mail: stephan.ritter@mpq.mpg.de

Bastian Hacker
Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 - 246
E-Mail: bastian.hacker@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 - 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

nachricht Sternenstaub reist häufiger in Meteoriten mit als gedacht
15.08.2017 | Max-Planck-Institut für Chemie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Welt der Trypanosomen

16.08.2017 | Biowissenschaften Chemie

Maschinensteuerung an Anwender: Intelligentes System für mobile Endgeräte in der Fertigung

16.08.2017 | Informationstechnologie

Komfortable Software für die Genomanalyse

16.08.2017 | Informationstechnologie