Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenprozessor für einzelne Photonen

07.07.2016

MPQ-Wissenschaftler realisieren Photon-Photon-Logikgatter über deterministische Wechselwirkung mit einem stark gekoppelten Atom-Resonator-System.

„Geht nicht – gibt’s nicht!“ Nach dieser Devise haben es Physiker aus der Abteilung Quantendynamik von Prof. Gerhard Rempe (Direktor am Max-Planck-Institut für Quantenoptik) geschafft, ein Quantenlogikgatter zu realisieren, in dem zwei Lichtquanten die entscheidenden Akteure sind.


Illustration der beim Logikgatter zwischen zwei Photonen ablaufenden Prozesse: die Photonen (blau) treffen nacheinander von rechts auf den teildurchlässigen Spiegel eines Resonators, in dem ein einzelnes Rubidiumatom (symbolisiert durch rotes Kügelchen mit gelben Elektronenorbitalen) gespeichert ist. Das Atom im Resonator spielt die Rolle eines Mediators, der zwischen den zwei Photonen eine deterministische Wechselwirkung vermittelt. Das Schema im Hintergrund fasst das vollständige Gatterprotokoll zusammen.

Grafik: Stephan Welte, MPQ, Abteilung Quantendynamik

Die Schwierigkeit bei solchen Vorhaben liegt darin, dass Photonen normalerweise nicht in Wechselwirkung miteinander treten, d.h. sie durchdringen einander ungestört. Das macht sie ideal für die Übertragung von Quanteninformation, jedoch weniger geeignet für deren Verarbeitung. Diese scheinbar unüberwindbare Hürde haben die Wissenschaftler ausgetrickst, indem sie ein drittes Teilchen hilfsweise ins Spiel kommen lassen: ein einzelnes in einem optischen Resonator gefangenes Atom, das die Rolle eines Mediators übernimmt.

„Das Besondere bei unserer Gatterimplementierung ist, dass die Wechselwirkung zwischen den Photonen deterministisch ist“, erklärt Dr. Stephan Ritter. „Dies ist essentiell für zukünftige, komplexere Anwendungen, wie skalierbare Quantencomputer oder globale Quantennetzwerke." (Nature, Advance Online Publication, 6. Juli 2016, DOI: 10.1038/nature18592).

In allen modernen Computern basiert die Datenverarbeitung darauf, dass Informationen zunächst binär kodiert und dann mit Hilfe logischer Operationen verarbeitet werden. Dies erfolgt mit sogenannten Logikgattern, die bestimmten Eingangswerten über deterministische Protokolle eindeutig Ausgangswerte zuordnen. Auch für die Verarbeitung von Informationen in Quantencomputern sind quantenmechanische Logikgatter die Schlüsselbausteine.

Für die Realisierung eines universellen Quantencomputers ist es dabei erforderlich, dass jedes Eingangsquantenbit eine maximale Veränderung der anderen Quantenbits bewirken kann. Die praktische Schwierigkeit liegt in der besonderen Natur von Quanteninformation: im Unterschied zu klassischen Bits kann sie nicht kopiert werden, klassische Methoden der Fehlerkorrektur scheiden also aus. Das Gatter muss daher bei jedem einzelnen Photon, das Information überträgt, funktionieren.

Wegen der besonderen Bedeutung von Photonen als Informationsträger – z.B. für die Kommunikation von Quanteninformation in ausgedehnten Quantennetzwerken – wird seit langem darüber geforscht, wie ein deterministisches Photon-Photon-Gatter zu realisieren wäre. Eine von mehreren Möglichkeiten, photonische Quantenbits zu kodieren, ist die Verwendung des Polarisationszustandes einzelner Photonen.

Hierbei entsprechen die Zustände „0“ und „1“, die ein klassisches Bit annehmen kann, zwei orthogonalen Polarisationszuständen. Im Gatter kann die Polarisation eines jeden Photons die des jeweils anderen beeinflussen. Welche Eingangspolarisationen zu welchen Ausgangspolarisationen führen, ist dabei wie beim klassischen Logikgatter von vorneherein festgelegt.

So wird zum Beispiel die lineare Polarisation des zweiten Photons um 90° gedreht, wenn das erste im logischen Zustand „1“ ist, und unverändert gelassen, sollte das erste „0“ sein. Im Gegensatz zu klassischen Logikgattern, die durch eine solche Beschreibung schon vollständig festgelegt wären, gibt es für Quantengatter hingegen eine unendliche Anzahl von möglichen Eingangszuständen. Für jedes muss das Quantenlogikgatter die eine richtige Kombination an Ausgangszuständen erzeugen.

In dem hier beschriebenen Experiment treffen zwei unabhängig voneinander kodierte Photonen kurz nacheinander von außen auf einen Resonator, der aus zwei Spiegeln höchster Güte gebildet wird. In seinem Zentrum wird ein einzelnes Rubidiumatom festgehalten, das mit dem Resonator ein stark gekoppeltes System bildet. Der Resonator verstärkt das Lichtfeld des von außen kommenden Photons am Ort des Atoms so stark, dass eine direkte Wechselwirkung möglich wird. Daher wird der Zustand des Atoms von dem Photon beeinflusst, und zwar genau dann, wenn dieses am Spiegel reflektiert wird. Diesen veränderten Zustand des Atoms spürt nun das zweite auf den Resonator treffende Photon.

Beide Photonen werden nach der Reflexion in einer 1,2 Kilometer langen Glasfaser für einige Mikrosekunden gespeichert. Währenddessen wird der atomare Zustand gemessen. Eine darauf konditionierte Polarisationsdrehung am ersten Photon ermöglicht die Rückwirkung des zweiten Photons auf das erste. „Die beiden Photonen sind nie zur gleichen Zeit am gleichen Ort, sehen sich also überhaupt nicht. Trotzdem erzielen wir maximale Wechselwirkung zwischen ihnen“, erklärt Bastian Hacker, Doktorand am Experiment.

Die Wissenschaftler konnten mit ihren Experimenten bestätigen, dass je nach Wahl der Polarisation für die beiden einlaufenden Photonen entweder das erste Photon das zweite beeinflusst, oder umgekehrt. Mit Hilfe einer Reihe von Messungen, bei denen die Werte der beiden auslaufenden Photonen bestimmt wurden, erstellten sie „Wahrheitstabellen“, welche den Erwartungen für bestimmte Gatteroperationen entsprechen und damit die verschiedenen Operationsmodi des Photon-Photon-Gatters demonstrieren.

Von besonderem Interesse ist der Fall, wenn die Eingangspolarisation der Photonen so eingestellt ist, dass sie sich gegenseitig beeinflussen. Dann befinden sich die beiden auslaufenden Photonen in einem verschränkten Zustand. „Diese Möglichkeit der Verschränkungserzeugung unterscheidet ein Quantengatter grundlegend von seinem klassischen Gegenstück“, erläutert Stephan Welte, Doktorand am Experiment. „Verschränkte Photonen können zum Beispiel für die Teleportation von Quantenzuständen genutzt werden.“

Die Wissenschaftler können sich vorstellen, dass mit dem neuen Photon-Photon-Gatter in Zukunft eine rein optische Quanteninformationsverarbeitung möglich wird. „Die Verteilung der Photonen über ein optisches Quantennetzwerk würde den Anschluss beliebig vieler Knoten und damit den Aufbau eines skalierbaren optischen Quantencomputers ermöglichen, bei dem das Photon-Photon-Gatter als zentrale Recheneinheit (CPU) dient“, erläutert Prof. Gerhard Rempe. Olivia Meyer-Streng

Originalveröffentlichung:

Bastian Hacker, Stephan Welte, Gerhard Rempe, and Stephan Ritter
A photon-photon quantum gate based on a single atom in an optical resonator
Nature, Advance Online Publication, 6 July 2016, DOI: 10.1038/nature18592

Kontakt:

Prof. Dr. Gerhard Rempe
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 701
E-Mail: gerhard.rempe@mpq.mpg.de

Dr. Stephan Ritter
Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 - 728
E-Mail: stephan.ritter@mpq.mpg.de

Bastian Hacker
Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 - 246
E-Mail: bastian.hacker@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 - 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie