Quantenphysikalisches Modellsystem

Schematische Darstellung des Füllprozesses: Die Atome in den äußeren Potentialtöpfen (durch gelbe Kugeln dargestellt) bewegen sich wie durch die roten Pfeile angedeutet in den mittleren Topf. Grafik: David Fischer

Ein Modellsystem, das ein besseres Verständnis der Vorgänge in einem quantenphysikalischen Experiment mit ultrakalten Atomen ermöglicht, haben zwei Wissenschaftler der Universität Heidelberg entwickelt.

Mithilfe computergestützter Methoden konnten Prof. Dr. Sandro Wimberger und David Fischer vom Institut für Theoretische Physik dabei Gesetzmäßigkeiten entdecken, die auf universelle Eigenschaften dieses Systems hindeuten. Veröffentlicht wurden die Forschungsergebnisse in der Fachzeitschrift „Annalen der Physik“.

Kleine Teilchen folgen unter bestimmten Voraussetzungen völlig anderen physikalischen Gesetzen, als wir sie aus dem Alltag gewohnt sind. „Die Beobachtung solcher quantenphysikalischer Phänomene gestaltet sich jedoch mitunter schwierig und erfordert es, mit kleinen und isolierten Systeme zu arbeiten und sie zu erforschen.

Eine perfekte Isolation von der Umgebung ist jedoch nie möglich, so dass der fragile Zustand des Quantensystems leicht durch äußere Einflüsse gestört werden kann“, erläutert Erstautor David Fischer, der an der Universität Heidelberg studiert. Für Experimente in diesem Bereich ist es daher von großem Interesse, solche Störungen unter Kontrolle zu halten.

„Diese Kontrolle ermöglicht es nicht nur, die Kohärenz des Systems zu gewährleisten, sondern kann auch gezielt dazu benutzt werden, um spezielle Zustände herbeizuführen“, betont Prof. Wimberger.

Als geeignete Testobjekte haben sich in vielen Experimenten ultrakalte Atome erwiesen, die in sogenannte Potentialtöpfe gefüllt werden. Hier wird durch eine spezielle Laser-Anordnung eine Barriere erzeugt, durch die die Atome in einem kleinen Bereich eingesperrt sind. Werden nun mehrere Töpfe nahe genug zusammengebracht, haben die Atome die Möglichkeit, von einem Topf in einen benachbarten zu „tunneln“.

Sie sind zwar immer noch innerhalb der Töpfe gefangen, können sich aber von Topf zu Topf bewegen, wie die Heidelberger Physiker erläutern. Die Temperatur der Atome, die nur knapp oberhalb des absoluten Nullpunkts von -273,15 Grad Celsius liegt, begünstigt dieses quantenmechanische Verhalten.

Bei der Entwicklung ihres Modellsystems haben David Fischer und Sandro Wimberger ein an der Technischen Universität Kaiserslautern durchgeführtes Experiment reproduziert. Dort wurde das Verhalten von kalten Atomen in einer Kette von Potentialtöpfen untersucht. Die Forscher füllten die Kette dazu mit Atomen, leerten den mittleren Topf und beobachteten, wie dieser sich wieder mit Atomen aus den anderen Töpfen füllte.

„Die Ergebnisse dieser Untersuchung legen nahe, dass bei diesem Vorgang Dekohärenz, also äußere Störeinflüsse, eine entscheidende Rolle spielt. Unklar ist jedoch, durch welche mikroskopischen Prozesse das Quantensystem mit der Umgebung wechselwirkt“, sagt David Fischer.

In ihrer computergestützten Simulation des Wiederauffüll-Vorgangs haben die beiden Heidelberger Wissenschaftler nun verschiedene Hypothesen untersucht und sind dabei der Frage nachgegangen, welche Prozesse tatsächlich auf das Verhalten des Modellsystems einwirken.

Dabei haben sie unter anderem beobachtet, wie sich die für den Wiederauffüllvorgang benötigte Zeit bei Variation der Systemparameter verändert. Diese Zeitdauer folgt einem Potenzgesetz – abhängig von der Dekohärenz-Rate, die die Forscher vorgegeben haben. „In der Physik ist das oftmals ein Zeichen für ein universelles Verhalten des Systems, das für alle Skalen gilt und somit das Gesamtproblem vereinfacht“, so Prof. Wimberger.

Originalpublikation:
D. Fischer und S. Wimberger: Models for a multimode bosonic tunneling junction, Ann. Phys. (2017) (published online 13 February 2017), doi: 10.1002/andp.201600327

Kontakt:
Prof. Dr. Sandro Wimberger
Institut für Theoretische Physik
Telefon (06221) 54-9449
s.wimberger@thphys.uni-heidelberg.de

Kommunikation und Marketing
Pressestelle
Tel. +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Media Contact

Marietta Fuhrmann-Koch idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-heidelberg.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer