Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenphysikalisch geschmolzen

07.04.2014

Durch Quanteneffekte ausgelöste Änderungen des Aggregatzustands – physikalisch korrekt Quantenphasenübergänge – spielen bei vielen erstaunlichen Phänomenen in Festkörpern, wie der Hochtemperatursupraleitung eine Rolle.

Forschende aus der Schweiz, England, Frankreich und China haben nun in der magnetischen Struktur des Materials TlCuCl3 Quanteneffekte gezielt verändert, indem sie das Material äusserem Druck aussetzten und diesen Druck variierten. Mithilfe von Neutronen konnten sie beobachten, was bei einem Quantenphasenübergang passiert, bei dem die magnetische Struktur quantenphysikalisch schmilzt.


Phasendiagram des Materials TlCuCl3 bei tiefen Temperaturen. Der quantenkritische Punkt (QCP) separiert die Phase ohne magnetische Ordnung (bei niedrigem Druck) von der mit (bei hohem Druck).

(Grafik: Paul Scherrer Institut/Christian Rüegg)

Wenn man Eis erwärmt, bewegen sich die Wasserteilchen darin immer heftiger, bis irgendwann die Kräfte zwischen den Teilchen nicht mehr stark genug sind, um sie zusammenzuhalten – das Eis schmilzt und wird zu flüssigem Wasser. Die Quantenphysik sagt voraus, dass man vergleichbare Phänomene beobachten kann, wenn man die Quantenfluktuationen, also gewissermassen unser Unwissen über gewisse Eigenschaften der Teilchen in einem Material, ändert.

Solche durch Quanteneffekte ausgelösten Änderungen des Aggregatzustands – physikalisch korrekt Quantenphasenübergänge – spielen bei vielen erstaunlichen Phänomenen in Festkörpern wie der Hochtemperatursupraleitung eine Rolle. Forschende aus der Schweiz, England, Frankreich und China haben nun in der magnetischen Struktur des Materials TlCuCl3 Quantenfluktuationen gezielt verändert, indem sie das Material äusserem Druck aussetzten und diesen Druck variierten.

Mithilfe von Neutronen konnten sie beobachten, was bei einem Quantenphasenübergang passiert, bei dem die magnetische Struktur quantenphysikalisch schmilzt. So konnten sie die Vorgänge bei diesem „Quantenschmelzen“ mit klassischen Phasenübergängen vergleichen.

Ob Wasser flüssig ist oder ein Festkörper in Form von Eis, hängt davon ab, welche von zwei Kräften in seinem Inneren die Oberhand gewinnt. Die eine ist die Bindungskraft zwischen den Wasserteilchen, die andere die Bewegung der Teilchen, die umso heftiger wird, je höher die Temperatur ist. Erwärmt man Eis über Null Grad Celsius, wird die Bewegung der Teilchen so stark, dass die chemische Bindung sie nicht mehr zusammenhalten kann – das Eis schmilzt. Es ändert sich der Aggregatzustand, oder wie Physiker sagen: Es kommt zu einem Phasenübergang. Ein ähnliches Phänomen kann man in Magneten beobachten – erwärmt man einen Magneten, wird er unmagnetisch. Der Grund ist ähnlich: Man kann sich vorstellen, dass es im Inneren des Magneten viele winzige Stabmagnete gibt – Physiker sprechen von magnetischen Momenten. Wenn alle diese magnetischen Momente parallel ausgerichtet sind, ist das ganze Material magnetisch geordnet und wirkt wie ein Magnet. Für die Ausrichtung der Magnete sorgen Kräfte, die im Material zwischen den magnetischen Momenten wirken. Wird das Material erhitzt, schwankt die Richtung der Momente immer stärker bis die Kräfte diese nicht mehr ausrichten können und schliesslich die magnetische Ordnung verschwindet – sie ist gewissermassen geschmolzen.

Quantenphysikalische Aggregatzustände

Neben diesem „klassischen“, durch Temperaturänderungen ausgelösten Schmelzen gibt es in manchen Materialien noch ein vergleichbares, fundamentales Phänomen, das durch die Gesetze der Quantenphysik bestimmt wird. Die Quantenphysik bewirkt, dass man gewissen Eigenschaften von Teilchen in einem Material nicht genau kennen kann. Diese Unbestimmtheit bezeichnet man oft als Quantenfluktuationen. Die Bezeichnung lehnt sich an die oben beschriebenen klassischen Fluktuationen an, bei denen die Position von Teilchen oder die Ausrichtung von magnetischen Momenten mit der Zeit schwankt und deswegen im Mittel unbestimmt ist. Die Natur der beiden Arten von Fluktuationen ist aber jeweils völlig verschieden.

Das durch Quantenfluktuationen ausgelöste „Schmelzen“ ist ein Beispiel für einen Quantenphasenübergang – das durch die Veränderungen der Quantenfluktuationen verursachte quantenphysikalische Analogon eines klassischen Phasenübergangs – also des Übergangs zwischen verschiedenen Aggregatzuständen. Solche Quantenphasenübergänge sind für viele interessante Phänomene der Festkörperphysik wichtig, wie zum Beispiel für die Hochtemperatursupraleitung.

Herausforderung Quantenfluktuationen

Forschende des Paul Scherrer Instituts (Villigen, Schweiz) haben nun mit Kollegen am University College London, dem Institut Laue-Langevin (Grenoble, Frankreich), der Universität Bern und der Universität Renmin (Peking, China) die Wirkung der Quantenfluktuationen und ihr Zusammenspiel mit klassischen Fluktuationen in dem Material TlCuCl3 genau untersucht. Dieses war an der Universität Bern hergestellt worden. Die besondere experimentelle Herausforderung dabei war, dass man die Quantenfluktuationen gezielt verändern musste. Die klassischen Fluktuationen zu ändern, ist relativ einfach – man muss das Material abkühlen oder erwärmen. Um die Quantenfluktuationen in einem Material zu kontrollieren, muss man aber die Wechselwirkung zwischen den Momenten gezielt variieren. Die Forschenden nutzten die Tatsache, dass TlCuCl3 relativ weich ist, sodass man mit äusserem Druck atomare Abstände und damit die Wechselwirkung innerhalb des Materials gut verändern kann. Im Experiment haben sie so über einen grossen Bereich Druck und Temperatur variiert und das Material mit Neutronen aus den Neutronenquellen des PSI und des ILL untersucht. So konnten sie genau bestimmen, wie sich die Zustände des Materials verändern.

Unordnung ist nicht gleich Unordnung

Die Forschenden haben die magnetische Ordnung in dem Material untersucht, also die Anordnung der magnetischen Momente. Bei niedrigem Druck sind die magnetischen Kräfte zwischen den magnetischen Momenten am schwächsten, und die Quantenfluktuationen der magnetischen Momente am stärksten. Damit ist auch die „Unordnung“ unter den magnetischen Momenten am grössten. „Diese Unordnung sieht aber anders aus als in einem klassischen System. Dort sind die Richtungen der magnetischen Momente im unmagnetischen Zustand einfach zufällig verteilt“, erklärt Christian Rüegg, Laborleiter am Paul Scherrer Institut und Leiter des Forschungsprojekts. „Hier hingegen bilden zwei benachbarte Momente jeweils ein Paar, wobei die beiden Momente in entgegengesetzte Richtungen zeigen. Die Wechselwirkung zwischen benachbarten Paaren ist aber nicht stark genug, sodass keine Ordnung mit langer Reichweite entsteht. Innerhalb des Paares sind die Momente aber genau entgegengesetzt.“ Dabei ist nach den Gesetzen der Quantenphysik nicht festgelegt, welches der Momente eines Paares in welche Richtung weist. Dieses vollständige Unwissen über die Ausrichtung der einzelnen Momente spiegelt sich in der maximalen Quantenfluktuation wider. Erhöht man nun den Druck, rücken die magnetischen Momente zusammen, sodass die Momente aus benachbarten Paaren einander stärker spüren und allmählich eine langreichweitige Ordnung entsteht – es kommt zum Quantenphasenübergang.

Quantendynamik der magnetischen Momente

In ihrem Experiment haben sich die Forscher vor allem für die magnetischen „Anregungen“ im Inneren des Materials interessiert, die sehr präzise Informationen zu den Quantenzuständen der Momente liefern können. Solche Anregungen kann man sich als gemeinsame, koordinierte Schwingung der magnetischen Momente vorstellen, ähnlich einer Wasserwelle oder der Schwingung einer Gitarrensaite. Die Anregungen hängen wieder mit der „Unordnung“ im Material zusammen, denn je mehr Anregungen man hat, umso stärker bewegen sich die magnetischen Momente. Die Quantenphysik schreibt vor, dass die Anregungen in TlCuCl3 eine Mindeststärke haben müssen und auch nur in festgelegten Stufen stärker werden können. Wie stark die Mindestenergie einer bestimmten Anregung ist, also wie leicht diese angestossen werden kann, hängt von den Wechselwirkungen zwischen den magnetischen Momenten ab – in diesem Experiment also vom Druck, der auf die Probe ausgeübt wird. Die Forschenden haben in ihrem Experiment gezeigt, dass bei starkem Druck manche Anregungen so hohe Energien brauchen, dass sie praktisch gar nicht vorkommen. Senkt man den Druck und nähert sich dem Wert, bei dem es zum Quantenphasenübergang kommt, so nimmt die Energie ab, die für die Anregungen nötig ist, und immer mehr verschiedene Anregungen können beobachtet werden. Darunter sind auch solche, die mathematisch wie das Higgs-Boson der Elementarteilchenphysik zu beschreiben sind, sodass man von Higgs-Teilchen im Festkörper sprechen kann. Rüegg erklärt: „Wir waren sehr erstaunt, dass diese Anregungen eine wichtige Rolle spielen, unabhängig davon ob die Ordnung nun durch quantenmechanische oder klassische Fluktuationen zerstört wird. Das ist eine faszinierende Eigenschaft von Quantenphasenübergängen.“

Neutronen zeigen Anregungen

Die Untersuchungen haben die Forschenden mithilfe von Neutronen an den Neutronenquellen des Paul Scherrer Instituts und des Institut Laue-Langevin durchgeführt. In Ihren Experimenten haben sie einen Strahl von Neutronen durch eine Probe des Materials geschickt und beobachtet, wie sich Flugrichtung und Geschwindigkeit der Neutronen auf dem Weg durch die Probe verändert haben. So konnten sie die magnetische Ordnung und die Anregungen in dem Material untersuchen. Um die Anregungen auszumessen, beobachten sie, wie sich die Geschwindigkeit und damit die Bewegungsenergie der Neutronen auf dem Weg durch die Probe ändert. Ist das Neutron langsamer als vorher, muss es seine Energie in der Probe verloren haben, indem es dort eine Anregung angestossen hat. „Diese Fluktuationen können nur mit Neutronen beobachtet werden, und es ist entscheidend, dass man die Möglichkeit hat, die Proben bei verschiedenen Werten von Druck und Temperatur zu untersuchten“, erklärt Martin Boehm, der am ILL die Messungen betreut hat. „Dabei profitieren wir von einer Besonderheit der Neutronen: Sie können quasi ungestört durch die Wände der Druckzelle fliegen, in der sich die Probe während der Messung befindet.“

Ein neues Modellmaterial

„Am Material TlCuCl3 lassen sich solche spektroskopischen Experimente zum ersten Mal durchführen, weil es relativ weich ist und man deswegen die Abstände und Wechselwirkungen zwischen den magnetischen Momenten gut mithilfe von äusserem Druck verändern kann“, erklärt Rüegg. „Bei anderen Materialien braucht man einen viel stärkeren Druck, den man aber nur bei sehr kleinen Proben einsetzen kann, sodass diese dann für spektroskopische Experimente mit Neutronen zu klein sind. Alternativ kann man versuchen, verschiedene Proben herzustellen, die in ihrer Struktur ein wenig variieren. Aber so erhält man keinen vollständigen Überblick über das Verhalten, und die Versuche würden sehr lange dauern.“

Text: Paul Scherrer Institut/Paul Piwnicki 


Über das PSI
Das Paul Scherrer Institut PSI entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Energie und Umwelt sowie Mensch und Gesundheit. Die Ausbildung von jungen Menschen ist ein zentrales Anliegen des PSI. Deshalb sind etwa ein Viertel unserer Mitarbeitenden Postdoktorierende, Doktorierende oder Lernende. Insgesamt beschäftigt das PSI 1900 Mitarbeitende, das damit das grösste Forschungsinstitut der Schweiz ist. Das Jahresbudget beträgt rund CHF 350 Mio.

Über das Institut Laue-Langevin (ILL)
Das Institut Laue-Langevin (ILL) ist ein internationales Forschungszentrum im französischen Grenoble. Seit den ersten Experimenten im Jahr 1972 ist es führend auf dem Gebiet der Neutronenstreuungsforschung und -technologie. Das ILL betreibt eine der stärksten Neutronenquellen der Welt, von der Neutronenstrahlen zu 40 hoch komplexen Instrumenten geleitet werden, die ständig modernisiert und verbessert werden. Jährlich besuchen 1200 Wissenschaftler aus mehr als 40 Ländern das ILL, um Forschungsarbeiten auf den Gebieten Physik der kondensierten Materie, (grüne) Chemie, Biologie, Kern- und Teilchenphysik sowie Materialwissenschaft durchzuführen. Deutschland, Frankreich und Grossbritannien sind Partner und Hauptgeldgeber des ILL.

Originalveröffentlichung:

P. Merchant, B. Normand,K. W. Krämer, M. Boehm, D. F. McMorrow, and Ch. Rüegg
Quantum and classical criticality in a dimerized quantum antiferromagnet
Nature Physics Advance Online Publication (AOP) 06 April 2014 DOI: 10.1038/NPHYS2902 http://dx.doi.org/10.1038/NPHYS2902

Kontakt:

Prof. Dr. Christian Rüegg, Labor für Neutronenstreuung, Paul Scherrer Institut und Département de Physique de la Matière Condensée, Université de Genève,
Paul Scherrer Institute, 5232 Villigen PSI, Schweiz
Tel:+41 56 310 47 78; E-Mail: christian.rueegg@psi.ch

Dagmar Baroke | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht APEX wirft einen Blick ins Herz der Finsternis
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht Matrix-Theorie als Ursprung von Raumzeit und Kosmologie
23.05.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics