Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenphysikalisch gekoppelte Diamanten

10.04.2017

Atomare Fehler in Diamanten können als Quantenspeicher verwendet werden. An der TU Wien gelang es nun erstmals, Defekte unterschiedlicher Diamanten quantenphysikalisch zu koppeln.

Diamanten mit winzigen Fehlern könnten für die Zukunft der Quantentechnologie eine große Rolle spielen. An der TU Wien werden schon seit längerer Zeit die Quanteneigenschaften solcher Diamanten untersucht, nun gelang es erstmals, die speziellen Defekte in zwei solchen Diamanten miteinander zu koppeln.


Zwei schwarze Diamanten auf einem supraleitenden Chip (12x4mm). Die Geschwungene Linie ist ein Resonator, der die beiden Diamanten koppelt.

TU Wien


Das Team: Johannes Majer, Stefan Nevacsil, Noomi Peterschofsky, Thomas Astner, Andreas Angerer (v.l.n.r)

TU Wien

Das ist eine wichtige Voraussetzung für die Entwicklung neuer Anwendungen – von hochsensiblen Sensoren bis hin zu Schaltungen für Quantencomputer. Publiziert wurde die Arbeit nun im angesehenen Fachjournal „Physical Review Letters“ und sogar als „Editor’s Suggestion“ ausgewählt.

Auf der Suche nach dem passenden Quantensystem

„Quantenzustände sind leider sehr fragil und zerfallen sehr schnell“, erklärt Johannes Majer, Leiter der Hybrid Quantum-Forschungsgruppe am Atominstitut der TU Wien. Daher wird intensiv daran geforscht, Quantensysteme zu finden, die sich für technologische Anwendungen nutzen lassen. Zwar gibt es einige vielversprechende Kandidaten mit speziellen Vorteilen, aber bis heute hat man kein System, das alle Anforderungen gleichzeitig erfüllt.

„Ein möglicher Kandidat für die Realisierung eines Quantencomputers sind ganz spezielle Defekte in Diamanten“, sagt Johannes Majer. Ein reiner Diamant besteht ausschließlich aus Kohlenstoffatomen. Er kann allerdings passieren, dass an manchen Stellen im Diamant stattdessen ein Stickstoffatom sitzt und an einer benachbarten Stelle im atomaren Gitter der Diamantstruktur überhaupt kein Atom vorhanden ist – man spricht von einem „Loch“.

Dieser Defekt aus Stickstoffatom und Loch bildet ein Quantensystem, dessen Zustände sehr langlebig sind, daher eignen sich Diamanten mit solchen Fehlern sehr gut für Quanten-Experimente.

Auf die Kopplung kommt es an

Eine wichtige Voraussetzung für viele quantentechnologische Anwendungen ist es allerdings, solche Quantensysteme miteinander koppeln zu können. Und das war bei den Diamant-Systemen bisher kaum möglich. „Die Wechselwirkung zwischen zwei solchen Stickstoff-Loch-Defekten ist extrem schwach und hat nur eine Reichweite von etwa zehn Nanometern“, sagt Majer.

Nun gelang dieses Kunststück allerdings mit Hilfe eines supraleitenden Quantenchips, in dem Mikrowellenstrahlung erzeugt wird. Schon in den vergangenen Jahren untersuchte das Team der TU Wien, wie man die Diamanten mit Hilfe von Mikrowellen manipulieren kann: „Billionen von Stickstoff-Loch-Defekten im Diamanten werden kollektiv an ein Mikrowellenfeld gekoppelt“, sagt Johannes Majer. „Damit kann man den Quantenzustand der Diamanten manipulieren und auslesen.“

Nun ist der entscheidende nächste Schritt geglückt: Dem Team ist es gelungen, zwei verschiedene Diamanten so an beiden Enden eines Chips anzukoppeln, dass eine Wechselwirkung zwischen den beiden Diamanten entsteht. „Diese Wechselwirkung wird vom Mikrowellen-Resonator im Chip dazwischen vermittelt, der Resonator hat damit eine ähnliche Funktion wie ein Datenbus in einem herkömmlichen Computer“, sagt Johannes Majer.

Die Kopplung zwischen den beiden Diamanten lässt sich gezielt ein- und ausschalten: „Die beiden Diamanten sind um einen bestimmten Winkel gegeneinander verdreht“, berichtet Thomas Astner, der Erstautor der aktuellen Arbeit. „Außen legt man ein Magnetfeld an – und seine Richtung ist entscheidend: Wenn das Magnetfeld mit beiden Diamanten denselben Winkel einschließt, kann man sie quantenphysikalisch koppeln. Bei anderen Magnetfeldrichtungen kann man die einzelnen Diamanten ohne Kopplung untersuchen.“ Die ersten Schritte des Experimentes wurden von Noomi Peterschofsky im Rahmen ihrer Bachelorarbeit unternommen. Danach gelang es Thomas Astner und Stefan Nevlacsil während ihrer Masterarbeit, die Kopplung der Diamanten experimentell nachzuweisen.

Originalpublikation: T. Astner et al., Phys. Rev. Lett. 118, 140502
https://doi.org/10.1103/PhysRevLett.118.140502

Rückfragehinweis:
Dr. Johannes Majer
Atominstitut
Technische Universität Wien
Stadionalle 2, 1020 Wien
T: +43-699-10253808
johannes.majer@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht Rätselhaftes IceCube-Ereignis könnte von Tau-Neutrino stammen
19.06.2018 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungsnachrichten

Breitbandservices von DNS:NET erweitert

20.06.2018 | Unternehmensmeldung

Mit Parasiten infizierte Stichlinge beeinflussen Verhalten gesunder Artgenossen

20.06.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics