Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenphysik mit Spin

21.09.2009
In der Grundlagenforschung von Patrik Recher kreist alles um den Spin, einen intrinsischen Drehimpuls im Elektron selbst, aus dem ein magnetisches Moment resultiert. Und sie könnte dazu beitragen, den Quantencomputer zu realisieren - einen Computer, der viele Aufgaben schneller lösen würde als die herkömmlichen Rechner.

Seit 1. August leitet der promovierte Physiker an der Universität Würzburg eine Emmy Noether-Nachwuchsgruppe, das Förderprogramm der Deutschen Forschungsgemeinschaft (DFG) für exzellente junge Wissenschaftler.

Die Nachwuchsgruppe "Korrelierter Spin Transport und Spin Manipulation in Graphen und Quanten Spin Hall Isolatoren" ist in der Abteilung Mesoskopische Physik der Theoretischen Physik angesiedelt und wird von der DFG über fünf Jahre mit rund 1,1 Millionen Euro gefördert.

Bei einer Messung zeigt der Elektronenspin entweder nach oben oder nach unten. Dabei entsprechen "spin up" und "spin down" den bits 0 und 1 im klassischen Computer, erklärt Patrik Recher. Im Unterschied zu 0 und 1 jedoch könnten sich im Quantenbit "up" und "down" überlagern und dadurch gleichzeitig auftreten - und damit die Leistungssteigerung ermöglichen. Das zentrale Problem jedoch, warum es diesen Quantencomputer noch nicht gibt, bestehe darin, dass diese Überlagerung in aller Regel nicht sehr stabil sei.

Der Prozess, wie diese Überlagerung sich auflöst, wird Dekohärenz genannt und durch die Kopplung der Spins an die Umgebung verursacht. Diese Kopplung ist sehr schwach in Graphen, dem erst vor kurzem entdeckten Untersuchungsmaterial von Patrik Recher. Dies sei vor allem der Tatsache geschuldet, dass diese Art Kohlenstoff, die dem der Bleistiftmine sehr nahe kommt, beinahe keine Atome mit Kernspins besitzt mit denen der Elektronenspin wechselwirken könnte.

Patrik Recher versteht sich als theoretischer Physiker, der Fragestellungen aufgreift und versucht, theoretische Modelle dafür zu entwickeln. Mit seiner Forschergruppe will er nun untersuchen, wie groß die Dekohärenz in Graphen tatsächlich ist und wie man die Spins mit elektrischen und magnetischen Feldern manipulieren kann. Und er will einen weiteren, fürs Quantencomputing ebenfalls wichtigen Aspekt studieren: Dass nämlich die Spins von Elektronen, die nebeneinander liegen und miteinander wechselwirken - den sogenannten verschränkten Elektronenpaaren - auch dann noch korrelieren, nachdem man sie räumlich getrennt hat.

Nicht zuletzt möchte er im Rahmen des Projekts die Elektron-Elektron Wechselwirkungen in einem sogenannten Randkanal anschauen, also in einem Strom von aneinandergereihten Elektronen, die alle die gleiche Spin-Richtung aufweisen. Dazu will er die bereits an Graphen gewonnenen Erkenntnisse auf die Quecksilber-Tellurid-Quantentröge übertragen - einem Material, das die benachbarte Arbeitsgruppe von Professor Laurens Molenkamp am Lehrstuhl für Experimentelle Physik III entwickelt hat und intensiv untersucht.

Mit dem Emmy Noether-Programm möchte die DFG Nachwuchswissenschaftlern einen Weg zu früher wissenschaftlicher Selbständigkeit ermöglichen. Indem sie eine eigene Nachwuchsgruppe leiten, sollen promovierte Forscher durch die in der Regel fünfjährige Förderung die Befähigung zum Hochschullehrer erhalten. Im Jahr 2008 hat die DFG in ganz Deutschland insgesamt 84 solcher Nachwuchsgruppen neu bewilligt.

Im Fall von Patrik Recher hat sie ein zukunftsweisendes Projekt gewürdigt. "Aber auch der Standort Würzburg wurde als sehr fördernd, geradezu als ideal, für mein Forschungsvorhaben angesehen", berichtet Recher. "Das sind vor allem die Gruppe von Professor Björn Trauzettel in der theoretischen Physik und die Gruppe von Professor Molenkamp in der experimentellen Physik."

Die DFG hat aber auch die eigenen Vorleistungen des 36-jährigen Schweizers honoriert, der an der Universität Basel Physik studiert hat und dort auch 2003 in theoretischer Physik promoviert wurde. So hat er zum Beispiel in seiner Dissertation Pionierarbeit bei der Frage geleistet, wie verschränkte und räumlich getrennte Elektronenpaare erzeugt werden können. 2004 bis 2006 forschte er in den USA an der Stanford Universität. 2006 bis 2008 ging er als Postdoc an die Universität Leiden und an das Kavli Institut für Nanowissenschaften in Delft in den Niederlanden und ist damit auch international gut vernetzt. Nach einem halben Jahr als Postdoc an der Universität Würzburg ist er seit August 2009 Emmy Noether-Nachwuchsgruppenleiter am Institut für Theoretische Physik und Astrophysik der Universität Würzburg und ist gerade dabei, sich seine Arbeitsgruppe aufzubauen.

Kontakt:
Dr. Patrik Recher,
T (0931) 318-0482,
E-Mail: precher@physik.uni-wuerzburg.de

Margarete Pauli | idw
Weitere Informationen:
http://www.physik.uni-wuerzburg.de/meso

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erforschung von Elementarteilchen in Materialien
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Erforschung von Elementarteilchen in Materialien

17.01.2017 | Physik Astronomie

Wasser - der heimliche Treiber des Kohlenstoffkreislaufs?

17.01.2017 | Geowissenschaften

Kieselalge in der Antarktis liest je nach Umweltbedingungen verschiedene Varianten seiner Gene ab

17.01.2017 | Biowissenschaften Chemie