Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenphysik macht sicheres Cloud Computing möglich

20.01.2012
Quantencomputer mit Quantenkryptographie vereinigen ForscherInnen des Vienna Center for Quantum Science and Technology (VCQ) an der Universität Wien und des Instituts für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften.
Sie zeigen in der aktuellen Ausgabe von "Science", dass Quanteneffekte absolut sicheres Cloud Computing ermöglichen. In einem Experiment gelang es, einen Quantencomputer so zu konstruieren, dass alle Ergebnisse der Daten und Rechnungen dem Computer selbst verborgen blieben.

Quantencomputer haben gegenüber klassischen Computern einen bedeutenden Vorteil: schnellere Rechnungen, die auf Quanteneffekten beruhen. Aufgrund Ihrer Komplexität existieren sie bisher nur als Grundlagenexperimente wie im Labor der Fakultät für Physik der Universität Wien. Daher ist es naheliegend, dass diese Technik zukünftig zunächst nur in wenigen spezialisierten Rechenzentren zur Verfügung stehen wird – ähnlich wie bei heutigen Großrechnern.

Auslagerung in die "Rechnerwolke"

Diese Strategie folgt dem aktuellen Trend des Cloud Computing, bei dem IT-Leistungen werden in die "Rechnerwolke" ausgelagert werden. Nutzer könnten von außerhalb Anfragen an einen Quantencomputer stellen und Quantenrechnungen durchführen. Das neue Cloud Computing hat gegenüber derzeitigen Lösungen einen entscheidenden Vorteil, der nur durch Quanteneffekte erreicht werden kann: Es ist absolut sicher.
Code oder Telefonbuch?

Wiener ForscherInnen haben in Kooperation mit internationalen Forschungsinstituten erstmals diese absolute Sicherheit der Daten in einem Grundlagenexperiment realisiert. Dabei führt ein Quantencomputer Rechnungen durch, kann aber selbst nicht herausfinden, welche es sind. "Der Quantenrechner kann beispielsweise nicht unterscheiden, ob er gerade einen Code entschlüsselt, oder einen Eintrag in einem Telefonbuch sucht", erklärt Stefanie Barz, Hauptautorin der soeben in "Science" veröffentlichten Studie.
"Blind" errechnet

Dies könnte in Zukunft folgendermaßen funktionieren: Ein Nutzer präpariert Qubits – die kleinsten Einheiten des Quantencomputers – in einem nur ihm bekannten Zustand und sendet diese zum Quantencomputer. Dieser verschränkt die Qubits nach einem bestimmten Schema. Die Quantenrechnungen werden nun durch Messungen realisiert. Dazu schickt der Nutzer verschiedene Messanweisungen an den Quantencomputer.

Darstellung von verschiedenen verschränkten Zuständen, die für „blinde“ Quantenrechnungen genutzt werden können. Illustration: Equinox Graphics


Ergebnisse einer absolut sicheren Quantenrechnung in der „Rechnerwolke“: Die Datenübermittlung sowie die ganze Rechnung bleiben dabei absolut geheim. Illustration: Equinox Graphics

Diese Anweisungen sind an den Zustand der Qubits angepasst und ergeben nur einen Sinn, wenn auch der Zustand der Qubits bekannt ist. Da der Quantencomputer diesen jedoch nicht kennt, sind für ihn die Rechnungen eine unzusammenhängende Abfolge an Operationen. Daher kann er zu keinem Zeitpunkt Rückschlüsse ziehen, welche Rechnung er gerade durchführt – er rechnet "blind". Am Ende der Rechnung werden Ergebnisse an den Nutzer zurückgesendet. "Der Nutzer kann als einziger die Ergebnisse interpretieren und nutzen, da nur er die Ausgangszustände der Qubits kennt", erklärt Barz. Beim Wiener Experiment wurden einzelne Lichtteilchen (Photonen) als Qubits verwendet. Deren Polarisation, die Schwingungsebene des Lichts, ist die Grundlage für das photonische Qubit, und Photonen sind perfekt geeignet, weil sie ideale Informationsträger sind und über weite Distanzen gesendet werden können.

Internationale Forschungskooperation

Das Projekt ist eine internationale Koperation von ForscherInnen des Vienna Center for Quantum Science and Technology (VCQ) an der Universität Wien, des Instituts für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften, der University of Edinburgh, des Institute for Quantum Computing (University of Waterloo), des Centre for Quantum Technologies (National University of Singapore) und dem University College Dublin.

Publikation
Demonstration of Blind Quantum Computing. Stefanie Barz, Elham Kashefi, Anne Broadbent, Joseph Fitzsimons, Anton Zeilinger, Philip Walther
DOI: 10.1126/science.1214707

Links
Abstract zur Publikation: http://www.sciencemag.org/content/335/6066/303
Forschungsgruppe Quantenoptik, Quantennanophysik und Quanteninformation an der Fakultät für Physik der Universität Wien und Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften: http://www.quantum.at/

Vienna Center for Quantum Science and Technology (VCQ): http://vcq.quantum.at

Wissenschaftlicher Kontakt
Mag. Stefanie Barz
Vienna Center for Quantum Science and Technology
Fakultät für Physik
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-512 06
stefanie.barz@univie.ac.at
Rückfragehinweis
Mag. Alexander Dworzak
Öffentlichkeitsarbeit
Universität Wien
1010 Wien, Dr.-Karl-Lueger-Ring 1
T +43-1-4277-175 31
M +43-664-602 77-175 31
alexander.dworzak@univie.ac.at

Alexander Dworzak | Universität Wien
Weitere Informationen:
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics