Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenphysik macht sicheres Cloud Computing möglich

20.01.2012
Quantencomputer mit Quantenkryptographie vereinigen ForscherInnen des Vienna Center for Quantum Science and Technology (VCQ) an der Universität Wien und des Instituts für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften.
Sie zeigen in der aktuellen Ausgabe von "Science", dass Quanteneffekte absolut sicheres Cloud Computing ermöglichen. In einem Experiment gelang es, einen Quantencomputer so zu konstruieren, dass alle Ergebnisse der Daten und Rechnungen dem Computer selbst verborgen blieben.

Quantencomputer haben gegenüber klassischen Computern einen bedeutenden Vorteil: schnellere Rechnungen, die auf Quanteneffekten beruhen. Aufgrund Ihrer Komplexität existieren sie bisher nur als Grundlagenexperimente wie im Labor der Fakultät für Physik der Universität Wien. Daher ist es naheliegend, dass diese Technik zukünftig zunächst nur in wenigen spezialisierten Rechenzentren zur Verfügung stehen wird – ähnlich wie bei heutigen Großrechnern.

Auslagerung in die "Rechnerwolke"

Diese Strategie folgt dem aktuellen Trend des Cloud Computing, bei dem IT-Leistungen werden in die "Rechnerwolke" ausgelagert werden. Nutzer könnten von außerhalb Anfragen an einen Quantencomputer stellen und Quantenrechnungen durchführen. Das neue Cloud Computing hat gegenüber derzeitigen Lösungen einen entscheidenden Vorteil, der nur durch Quanteneffekte erreicht werden kann: Es ist absolut sicher.
Code oder Telefonbuch?

Wiener ForscherInnen haben in Kooperation mit internationalen Forschungsinstituten erstmals diese absolute Sicherheit der Daten in einem Grundlagenexperiment realisiert. Dabei führt ein Quantencomputer Rechnungen durch, kann aber selbst nicht herausfinden, welche es sind. "Der Quantenrechner kann beispielsweise nicht unterscheiden, ob er gerade einen Code entschlüsselt, oder einen Eintrag in einem Telefonbuch sucht", erklärt Stefanie Barz, Hauptautorin der soeben in "Science" veröffentlichten Studie.
"Blind" errechnet

Dies könnte in Zukunft folgendermaßen funktionieren: Ein Nutzer präpariert Qubits – die kleinsten Einheiten des Quantencomputers – in einem nur ihm bekannten Zustand und sendet diese zum Quantencomputer. Dieser verschränkt die Qubits nach einem bestimmten Schema. Die Quantenrechnungen werden nun durch Messungen realisiert. Dazu schickt der Nutzer verschiedene Messanweisungen an den Quantencomputer.

Darstellung von verschiedenen verschränkten Zuständen, die für „blinde“ Quantenrechnungen genutzt werden können. Illustration: Equinox Graphics


Ergebnisse einer absolut sicheren Quantenrechnung in der „Rechnerwolke“: Die Datenübermittlung sowie die ganze Rechnung bleiben dabei absolut geheim. Illustration: Equinox Graphics

Diese Anweisungen sind an den Zustand der Qubits angepasst und ergeben nur einen Sinn, wenn auch der Zustand der Qubits bekannt ist. Da der Quantencomputer diesen jedoch nicht kennt, sind für ihn die Rechnungen eine unzusammenhängende Abfolge an Operationen. Daher kann er zu keinem Zeitpunkt Rückschlüsse ziehen, welche Rechnung er gerade durchführt – er rechnet "blind". Am Ende der Rechnung werden Ergebnisse an den Nutzer zurückgesendet. "Der Nutzer kann als einziger die Ergebnisse interpretieren und nutzen, da nur er die Ausgangszustände der Qubits kennt", erklärt Barz. Beim Wiener Experiment wurden einzelne Lichtteilchen (Photonen) als Qubits verwendet. Deren Polarisation, die Schwingungsebene des Lichts, ist die Grundlage für das photonische Qubit, und Photonen sind perfekt geeignet, weil sie ideale Informationsträger sind und über weite Distanzen gesendet werden können.

Internationale Forschungskooperation

Das Projekt ist eine internationale Koperation von ForscherInnen des Vienna Center for Quantum Science and Technology (VCQ) an der Universität Wien, des Instituts für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften, der University of Edinburgh, des Institute for Quantum Computing (University of Waterloo), des Centre for Quantum Technologies (National University of Singapore) und dem University College Dublin.

Publikation
Demonstration of Blind Quantum Computing. Stefanie Barz, Elham Kashefi, Anne Broadbent, Joseph Fitzsimons, Anton Zeilinger, Philip Walther
DOI: 10.1126/science.1214707

Links
Abstract zur Publikation: http://www.sciencemag.org/content/335/6066/303
Forschungsgruppe Quantenoptik, Quantennanophysik und Quanteninformation an der Fakultät für Physik der Universität Wien und Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften: http://www.quantum.at/

Vienna Center for Quantum Science and Technology (VCQ): http://vcq.quantum.at

Wissenschaftlicher Kontakt
Mag. Stefanie Barz
Vienna Center for Quantum Science and Technology
Fakultät für Physik
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-512 06
stefanie.barz@univie.ac.at
Rückfragehinweis
Mag. Alexander Dworzak
Öffentlichkeitsarbeit
Universität Wien
1010 Wien, Dr.-Karl-Lueger-Ring 1
T +43-1-4277-175 31
M +43-664-602 77-175 31
alexander.dworzak@univie.ac.at

Alexander Dworzak | Universität Wien
Weitere Informationen:
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt
22.05.2017 | Universität Basel

nachricht Neuer Ionisationsweg in molekularem Wasserstoff identifiziert
22.05.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: XENON1T: Das empfindlichste „Auge“ für Dunkle Materie

Gemeinsame Meldung des MPI für Kernphysik Heidelberg, der Albert-Ludwigs-Universität Freiburg, der Johannes Gutenberg-Universität Mainz und der Westfälischen Wilhelms-Universität Münster

„Das weltbeste Resultat zu Dunkler Materie – und wir stehen erst am Anfang!“ So freuen sich Wissenschaftler der XENON-Kollaboration über die ersten Ergebnisse...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

Flugzeugreifen – Ähnlich wie PKW-/LKW-Reifen oder ganz verschieden?

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Myrte schaltet „Anstandsdame“ in Krebszellen aus

22.05.2017 | Biowissenschaften Chemie

Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

22.05.2017 | Physik Astronomie

Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält

22.05.2017 | Biowissenschaften Chemie