Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf Quantenpfaden durch das Heliumatom

28.07.2009
Am Max-Planck-Institut für Quantenoptik (MPQ) in Garching konnten Wissenschaftler des Heidelberger Max-Planck-Instituts für Kernphysik (MPIK) um Prof. Joachim Ullrich in Zusammenarbeit mit ihren Garchinger Kollegen aus der Nachwuchsgruppe von Dr. Matthias Kling nachweisen, dass Elektronen aus der Ionisation von Heliumatomen in ultrakurzen Laserimpulsen eine der Holographie analoge Interferenz zeigen.

Damit wurde eine wichtige Grundlage für Elektronenholographie von Atomen gelegt (Physical Review Letters 103, 053001).


Ionisation von Helium in einem ultrakurzen Laserimpuls. Das Elektron wird zu den Zeitpunkten t1 bzw. t2 im jeweiligen Maximum der elektrischen Feldamplitude (gelbe Kurve) aus dem Atompotential (blauer Trichter) freigesetzt. Die beiden Teilwege tasten dabei das Rumpfion in verschiedener Weise ab. Die entsprechenden Wellenpakte des auslaufenden Elektrons (rechts) überlagern sich schließlich und interferieren.
MPI für Kernphysik


Berechnetes Interferenzmuster eines Elektrons nach Ionisation von Helium in einem ultrakurzen Laserimpuls. Dargestellt ist die Häufigkeitsverteilung der Geschwindigkeit parallel (horizontale Achse) und senkrecht (vertikale Achse) zur Laserpolarisation.
MPI für Kernphysik

Wie bewegen sich die Elektronen in einem Atom, und was passiert, wenn diese Bewegung gestört wird? Dies in Quantensystemen zeitaufgelöst und detailliert zu erfassen ist ein alter Wunschtraum der Physiker, dessen Erfüllung man in den letzten Jahren durch erhebliche methodische Fortschritte immer näher gekommen ist. Einen neuen Zugang bietet die Attosekundenphysik, die eine Genauigkeit von weniger als einem Millionstel einer Milliardstel Sekunde verspricht. Innerhalb solch extrem kurzer Zeitspannen vollzieht sich die Bewegung von Elektronen in der Atomhülle.

Die Max-Planck-Forscher haben sich nun die quantenmechanische Welleneigenschaft des Elektrons, mit sich selbst interferieren zu können, zunutze gemacht, um einen tieferen Einblick in die Atomhülle zu erhalten. Interferenz ist auch die Grundlage der optischen Holographie: Hier durchlaufen Lichtwellen einen Strahlteiler, wobei ein Teilstrahl an dem zu untersuchenden Objekt reflektiert wird, um dann wieder mit dem auf direktem Wege gelaufenen Teilstrahl überlagert zu werden. Das dabei entstehende Interferenzmuster trägt die vollständige Information über das abgetastete Objekt und erlaubt daraus dessen Rekonstruktion.

Im aktuellen Experiment spielt nun das Heliumatom selbst die Rolle des Strahlteilers, indem es einem Laserimpuls ausgesetzt wird, der nur wenig länger als ein Schwingungszyklus dauert: Hier kann das Elektron nur in ganz kurzen Zeitspannen von einigen Attosekunden durch das Laserfeld aus dem Atom herausgerissen werden, nämlich dann, wenn die Amplitude der Schwingung ihr Maximum erreicht hat. Aufgrund des hier verwendeten sinusförmigen Verlaufs des elektrischen Feldes (siehe Abb. 1) gibt es genau zwei Zeitpunkte t1 und t2 für diesen Vorgang. Wird das Elektron zur Zeit t1 freigesetzt, so erzwingt der nachfolgende Verlauf der Feldstärke eine Kehrtwende und es muss wieder sein Mutterion passieren, bevor es das Atom endgültig verlässt. Dabei prägt das Mutterion dem Elektronen-Wellenpaket auf diesem Quantenpfad seine Eigenheiten auf. Erfolgt dagegen die Freisetzung zur Zeit t2, kann das Elektron ohne diesen Umweg herauslaufen (Abb 1).

Sind Richtung und Geschwindigkeit des Elektrons auf beiden möglichen Wegen am Ende identisch, und damit die Quantenpfade, welche ein und dasselbe Elektron gehen kann, ununterscheidbar, so kommt es zur Interferenz wie im bekannten Doppelspaltexperiment (Abb. 1). Analog zur optischen Holographie wird das Mutterion, bestehend aus dem Atomkern und dem in der Atomhülle verbliebenen zweiten Elektron, als Objekt gewissermaßen von dem ersten Elektronen-Wellenpaket abgebildet. Den Referenzstrahl bildet das zu t2 freigesetzte direkte Elektron.

Zum Nachweis der Elektronen dient ein am Heidelberger MPIK entwickeltes und gebautes Reaktionsmikroskop, welches für das gemeinsame Experiment an der AS-1-Beamline des MPQ installiert wurde. Die mit einer Repetitionsrate von 3 kHz erzeugten linear polarisierten Laserimpulse von fünf Femtosekunden Dauer und einer Wellenlänge von 740 nm werden in einer Ultrahochvakuumkammer auf einen Überschall-Gasjet aus Heliumatomen fokussiert. Mit schwachen elektrischen und magnetischen Feldern werden die Reaktionsprodukte - die freigesetzten Elektronen sowie die Heliumionen - auf zwei Detektoren gelenkt. Aus der Flugzeit und dem Auftreffort lässt sich Richtung und Geschwindigkeit der Teilchen bestimmen. Die Häufigkeitsverteilungen der so ermittelten Messwerte verglichen die Physiker mit Resultaten einer von Dieter Bauer (MPIK) durchgeführten theoretischen Modellrechnung (Abb. 2). Es zeigte sich, dass die gemessenen Werte qualitativ sehr gut mit der Vorhersage übereinstimmen, wobei das Modell nicht die gesamte Komplexität des Heliumatoms berücksichtigt. Daraus schließen die Forscher, dass die beobachteten Interferenzmuster in der Tat wie in einem Doppelspaltexperiment entstehen. Die Spalte sind dabei die beiden Zeitfenster, in denen das Elektron freigesetzt werden kann. Aus den gemessenen Strukturen folgt, dass die effektive Spaltbreite lediglich ca. 20 Attosekunden beträgt. Die mit dem Reaktionsmikroskop gemessene dreidimensionale Geschwindigkeitsverteilung des Elektrons einschließlich der darin enthaltenen Interferenzmuster könnte so als zeitabhängiges Hologramm des Heliumions aufgefasst werden.

Die Forscher um Ullrich und Kling messen dieser Methode ein großes Potential bei, weitere Fortschritte bei der Abbildung der inneren Dynamik von Atomen zu erzielen und zeitabhängige Informationen über atomare und molekulare Strukturen zu erhalten. Bei einer noch besseren Kontrolle der Wellenform der Laserimpulse könnte man beispielsweise zeitliche Veränderungen der Elektronen des Rumpfions auf einer Attosekunden-Zeitskala sichtbar machen.

Kontakt:

Prof. Dr. Joachim Ullrich
Max-Planck-Institut für Kernphysik
Saupfercheckweg 1
69117 Heidelberg
Tel: (+49)6221/516-696
Fax: (+49)6221/516-604
E-Mail: joachim.ullrich@mpi-hd.mpg.de
Dr. Matthias F. Kling
JRG "Attosecond Imaging"
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1, 85748 Garching
Tel: (+49)89/32905-234
Fax: (+49)89/32905-649
E-Mail: matthias.kling@mpq.mpg.de
Dr. Dieter Bauer
Max-Planck-Institut für Kernphysik
Saupfercheckweg 1
69117 Heidelberg
Tel: (+49)6221/516-186
Fax: (+49)6221/516-152
E-Mail: dieter.bauer@mpi-hd.mpg.de
Weitere Informationen:
http://link.aps.org/doi/10.1103/PhysRevLett.103.053001 Originalveröffentlichung
http://www-3.mpi-hd.mpg.de/mpi/fileadmin/files-mpi/PI_He-holo_Abb3.jpg Künstlerische Darstellung der Elektronenholographie von Helium in einem ultrakurzen Laserimpuls (MPQ).
http://www.mpi-hd.mpg.de/ullrich/ Webseite der Abteilung Ullrich (MPIK)
http://www.attoworld.de/junresgrps/attosecimaging.html Webseite der Nachwuchsgruppe Kling (MPQ)

http://www.mpi-hd.mpg.de/keitel/dbauer/ Webseite der Gruppe Bauer (MPIK)

Dr. Bernold Feuerstein | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-hd.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Highlight der Halbleiter-Forschung
20.02.2018 | Technische Universität Chemnitz

nachricht Beobachtung und Kontrolle ultraschneller Prozesse mit Attosekunden-Auflösung
20.02.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Highlight der Halbleiter-Forschung

20.02.2018 | Physik Astronomie

Wie verbessert man die Nahtqualität lasergeschweißter Textilien?

20.02.2018 | Materialwissenschaften

Der Bluthochdruckschalter in der Nebenniere

20.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics