Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenmessungen: Gesunder Menschenverstand reicht nicht aus

23.07.2009
Experimentalphysiker widerlegen nichtkontextuelle Quantenmodelle

Entgegen der klassischen Physik geht die Quantenphysik davon aus, dass die Eigenschaften eines quantenmechanischen Systems vom Messkontext abhängig sind, ob also andere Messungen an dem System durchgeführt werden.

Innsbrucker Physiker um Christian Roos und Rainer Blatt haben nun erstmals experimentell umfassend bewiesen, dass nichtkontextuelle Erklärungsversuche von Quantenphänomenen nicht möglich sind. Sie berichten darüber in der aktuellen Ausgabe der Zeitschrift Nature.

Die Quantenmechanik beschreibt die physikalischen Verhältnisse von Licht und Materie und formuliert dabei einige Vorstellungen, die unserem klassischen Bild der Natur völlig widersprechen. Immer wieder haben Physiker deshalb versucht, die nichtkausalen Phänomene der Quantenmechanik mit Hilfe von verborgenen Variablen zu erklären und damit den in der Quantentheorie allgegenwärtigen Zufall auszuschließen.

Eine theoretische Überlegung von Simon Kochen und Ernst Specker aus dem Jahr 1967 zeigt jedoch, dass bei solchen Erklärungsversuchen mit verborgenen Variablen die Messungen kontextuell sein müssen. Das heißt, dass das Ergebnis einer Messung von anderen gleichzeitig durchgeführten Messungen abhängig ist. Interessanterweise sind die Messungen hierbei miteinander verträglich und stören sich nicht gegenseitig.

Nun konnten die Forscher um Christian Roos und Rainer Blatt vom Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften und der Universität Innsbruck diese Überlegungen bestätigen und erstmals im Experiment nichtkontextuelle Erklärungsversuche der Quantentheorie ausschließen. Es gelang ihnen in einer Reihe von Messungen an einem Quantensystem aus zwei Ionen nachzuweisen, dass die Messung einer bestimmten Eigenschaft abhängig von anderen Messungen an dem System ist.

Technologischer Vorsprung
Ausgeführt wurde das Experiment von den Doktoranden Gerhard Kirchmair und Florian Zähringer sowie Rene Gerritsma, einem niederländischen Postdoc am IQOQI. Dazu speicherten die Forscher zwei lasergekühlte Kalzium-Ionen in einer elektromagnetischen Falle und führten dann eine Reihe von Messungen an den Ionen durch. „Wir haben dazu Techniken verwendet, die wir für den Bau des Quantencomputers entwickelt haben. Im Experiment mussten wir bis zu sechs Quantengatter hintereinander schalten“, erklärt Christian Roos. „Das war möglich, weil wir seit kurzem Quantengatter besonders hoher Güte erzeugen können.“ Erst im Vorjahr gelang es den Forschern um Rainer Blatt, erstmals ein beinahe fehlerfrei arbeitendes Quantengatter zu realisieren, mit einer Güte von über 99 Prozent. Mit diesem technologischen Vorsprung konnten die Forscher nun erstmals auch mit experimentellen Mitteln umfassend nachweisen, dass nichtkontextuelle Erklärungsmodelle mit verborgenen Variablen nicht mit den Experimenten vereinbar sind. Das Ergebnis ist dabei unabhängig vom verwendeten Quantenzustand, im Experiment wurde es an zehn verschiedenen Zuständen getestet. Einflüsse der noch verbliebenen Störungen im Messverfahren konnten die Experimentalphysiker mit Unterstützung der Theoretiker Otfried Gühne und Matthias Kleinmann aus der Innsbrucker Arbeitsgruppe um Prof. Hans Briegel ausschließen.
Zufall lässt sich nicht ausschließen
Schon 1935 stellten Albert Einstein, Boris Podolsky und Nathan Rosen die Frage nach der Vollständigkeit der Quantenmechanik im Sinne einer realistischen physikalischen Theorie, eine Kritik, die als EPR-Paradoxon in die Wissenschaftsgeschichte einging. Mitte der 1960er-Jahre konnte John Bell zeigen, dass die Quantentheorie keine reale und gleichzeitig lokale Theorie sein kann, ein Resultat, das inzwischen auch in Experimenten belegt werden konnte. Das Ergebnis von Kochen und Specker schließt eine andere Klasse von Theorien aus, ein überzeugender experimenteller Nachweis war jedoch bisher schwierig. Den Innsbrucker Wissenschaftlern ist nun auf Basis eines theoretischen Vorschlags des Spaniers Adán Cabello ein eindeutiges Experiment gelungen. Unterstützt wurden sie dabei von österreichischen Wissenschaftsfonds FWF, der Europäischen Union und der Industriellenvereinigung Tirol.

Publikation: State-independent experimental test of quantum contextuality. G. Kirchmair, F. Zähringer, R. Gerritsma, M. Kleinmann, O. Gühne, A. Cabello, R. Blatt, and C. F. Roos. Nature. 23. Juli 2009 (DOI: 10.1038/nature08172)

Kontakt:
Dr. Christian Roos
Institut für Quantenoptik und Quanteninformation
Österreichische Akademie der Wissenschaften
Otto-Hittmair-Platz 1, 6020 Innsbruck, Austria
Tel: +43 512 507-4728
E-mail: Christian.Roos@uibk.ac.at
Web: http://www.quantumoptics.at
Dr. Christian Flatz
Public Relations
Institut für Quantenoptik und Quanteninformation
Österreichische Akademie der Wissenschaften
Otto-Hittmair-Platz 1, 6020 Innsbruck, Austria
Tel. +43 650 5777122
E-Mail: pr-iqoqi@oeaw.ac.at
Web: http://www.iqoqi.at

Dr. Christian Roos | IQOQI
Weitere Informationen:
http://www.iqoqi.at/media/download

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Atome rennen sehen - Phasenübergang live beobachtet
30.03.2017 | Universität Duisburg-Essen

nachricht Flipper auf atomarem Niveau
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE