Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenmechanik in eisiger Kälte

28.06.2012
Das Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) arbeitet im EU-Verbundprojekt iSense am Prototyp eines tragbaren, integrierten Quantensensors, der auf ultrakalten Atomen basiert. Dieser könnte beispielsweise die Erdbeschleunigung messen – in hoher Genauigkeit und an jedem Ort der Erde.

Eine kleine Wolke Rubidium-Atome treibt durch eine Vakuumkammer, die Temperatur liegt nur wenige millionstel Grad über dem absoluten Nullpunkt. Ein Raster aus Laserlicht hält die Atome in Position, damit sie von einem weiteren Laser mit Lichtpulsen beschossen werden können.


Mikro-integrierter Extended Cavity Diode Laser (ECDL) für die Spektroskopie an Rubidium Atomen.
Foto: FBH/schurian.com

Die Rubidium-Teilchen reagieren empfindlich auf die Laserblitze und teilen sich in verschiedene quantenmechanische Zustände auf. Ein dritter Laser detektiert die Veränderungen in der Atomwolke während eines Beschusses, der nur wenige Millisekunden andauert.

Was sich wie ein Experiment aus einem Science-Fiction-Film anhört, wird in mehreren Forschungseinrichtungen in Deutschland, Italien, Frankreich, Österreich und Großbritannien Realität. Die Partner im iSense-Verbundprojekt erarbeiten einen Sensor-Prototyp, der auf dem beschriebenen Aufbau beruht und der sich die quantenmechanischen Eigenschaften von Atomen im eisigen Vakuum zunutze macht. „Die Rubidium-Atome kann man mit einem geeigneten Lichtpuls teilen, nicht im Sinne einer Kernspaltung, sondern im quantenmechanischen Sinne“, erklärt FBH-Mitarbeiter Dr. Andreas Wicht.

„Dabei wird die Aufenthaltswahrscheinlichkeit eines Atoms an einem Ort mit einer Welle beschrieben, für ein geteiltes Atom habe ich dann zwei Teilwellen. Es befindet sich also nach den Gesetzen der Wahrscheinlichkeit an zwei Orten zugleich.“ Für einen kurzen Zeitraum sind beide Atomteile also an verschiedenen Stellen im Schwerefeld der Erde lokalisiert.

Dadurch weisen sie unterschiedliche Energieniveaus auf, was sich in einer abweichenden Schwingungsfrequenz niederschlägt. Wenn das Atom einem weiteren Lichtimpuls ausgesetzt wird und die Teilwellen wieder zusammenkommen, kann man eine Phasenverschiebung der Schwingungen detektieren. „Wir können dadurch auf die Differenz in der Energie der Atome rückschließen und kennen die Erdbeschleunigung, die auf die Atome an genau diesem Punkt der Erde wirkt“, sagt Wicht. Da das System die Welleneigenschaften der ultrakalten Materie im Hochvakuum nutzt, nennt man es Materiewellen-Interferometer.

„Ein Materiewellen-Interferometer ist äußerst komplex konstruiert, weshalb es bisher sehr viel Platz benötigt und nur in Laboren aufgebaut werden kann“, ergänzt Christian Kürbis, der am FBH als Doktorand im iSense-Projekt arbeitet. Das Ziel der Verbundpartner ist es daher, alle Komponenten zu miniaturisieren und in einem handlichen, tragbaren Prototyp zu integrieren.

Das FBH liefert dafür mehrere mikro-integrierte Diodenlaser, die auf die besonderen Anforderungen hin optimiert wurden. „Unsere ECDL-Lasermodule sind extrem stabil, mit achtmal zweieinhalb Zentimetern Grundfläche sehr kompakt und haben eine schmale Linienbreite von wenigen kHz bei einer Wellenlänge von 780,24 Nanometern“, erklärt Kürbis. Alle Laser, ob zur Anregung der Rubidiumatome oder zur Detektion, müssen haargenau auf diese Wellenlänge abgestimmt werden. Hightech steckt aber nicht nur in den Dioden, sondern beispielsweise auch in den optischen Elementen wie Kollimationslinsen sowie in der Mikrointegration. „Das FBH ist eines der weltweit führenden Institute im Bereich der Entwicklung GaAs-basierter Diodenlaser“, so Wicht.

Ein transportfähiges Materiewellen-Interferometer könnte für die geophysikalische Erkundung Verwendung finden. Dabei sind sehr feine Variationen der Erdbeschleunigung an verschiedenen Orten relevant, etwa um unter der Oberfläche liegende Gesteine zu identifizieren. Wicht hält aber auch andere Anwendungen für denkbar: „Man kann auch Beschleunigungen und Rotationen sehr genau bestimmen. Besonders in Bereichen, in denen klassische Satellitennavigation nicht mehr funktioniert, etwa im Weltraum oder unter Wasser, können Materiewellen-Interferometer diese Aufgaben übernehmen.“

Kontakt:

Petra Immerz
Communications & Public Relations Manager
Ferdinand-Braun-Institut
Leibniz-Institut für Höchstfrequenztechnik
Gustav-Kirchhoff-Straße 4
12489 Berlin
Tel. +49.30.6392-2626
Fax +49.30.6392-2602
E-Mail petra.immerz@fbh-berlin.de
www.fbh-berlin.de
http://twitter.com/FBH_News

Christine Vollgraf | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.fbh-berlin.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie