Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenmechanik in eisiger Kälte

28.06.2012
Das Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) arbeitet im EU-Verbundprojekt iSense am Prototyp eines tragbaren, integrierten Quantensensors, der auf ultrakalten Atomen basiert. Dieser könnte beispielsweise die Erdbeschleunigung messen – in hoher Genauigkeit und an jedem Ort der Erde.

Eine kleine Wolke Rubidium-Atome treibt durch eine Vakuumkammer, die Temperatur liegt nur wenige millionstel Grad über dem absoluten Nullpunkt. Ein Raster aus Laserlicht hält die Atome in Position, damit sie von einem weiteren Laser mit Lichtpulsen beschossen werden können.


Mikro-integrierter Extended Cavity Diode Laser (ECDL) für die Spektroskopie an Rubidium Atomen.
Foto: FBH/schurian.com

Die Rubidium-Teilchen reagieren empfindlich auf die Laserblitze und teilen sich in verschiedene quantenmechanische Zustände auf. Ein dritter Laser detektiert die Veränderungen in der Atomwolke während eines Beschusses, der nur wenige Millisekunden andauert.

Was sich wie ein Experiment aus einem Science-Fiction-Film anhört, wird in mehreren Forschungseinrichtungen in Deutschland, Italien, Frankreich, Österreich und Großbritannien Realität. Die Partner im iSense-Verbundprojekt erarbeiten einen Sensor-Prototyp, der auf dem beschriebenen Aufbau beruht und der sich die quantenmechanischen Eigenschaften von Atomen im eisigen Vakuum zunutze macht. „Die Rubidium-Atome kann man mit einem geeigneten Lichtpuls teilen, nicht im Sinne einer Kernspaltung, sondern im quantenmechanischen Sinne“, erklärt FBH-Mitarbeiter Dr. Andreas Wicht.

„Dabei wird die Aufenthaltswahrscheinlichkeit eines Atoms an einem Ort mit einer Welle beschrieben, für ein geteiltes Atom habe ich dann zwei Teilwellen. Es befindet sich also nach den Gesetzen der Wahrscheinlichkeit an zwei Orten zugleich.“ Für einen kurzen Zeitraum sind beide Atomteile also an verschiedenen Stellen im Schwerefeld der Erde lokalisiert.

Dadurch weisen sie unterschiedliche Energieniveaus auf, was sich in einer abweichenden Schwingungsfrequenz niederschlägt. Wenn das Atom einem weiteren Lichtimpuls ausgesetzt wird und die Teilwellen wieder zusammenkommen, kann man eine Phasenverschiebung der Schwingungen detektieren. „Wir können dadurch auf die Differenz in der Energie der Atome rückschließen und kennen die Erdbeschleunigung, die auf die Atome an genau diesem Punkt der Erde wirkt“, sagt Wicht. Da das System die Welleneigenschaften der ultrakalten Materie im Hochvakuum nutzt, nennt man es Materiewellen-Interferometer.

„Ein Materiewellen-Interferometer ist äußerst komplex konstruiert, weshalb es bisher sehr viel Platz benötigt und nur in Laboren aufgebaut werden kann“, ergänzt Christian Kürbis, der am FBH als Doktorand im iSense-Projekt arbeitet. Das Ziel der Verbundpartner ist es daher, alle Komponenten zu miniaturisieren und in einem handlichen, tragbaren Prototyp zu integrieren.

Das FBH liefert dafür mehrere mikro-integrierte Diodenlaser, die auf die besonderen Anforderungen hin optimiert wurden. „Unsere ECDL-Lasermodule sind extrem stabil, mit achtmal zweieinhalb Zentimetern Grundfläche sehr kompakt und haben eine schmale Linienbreite von wenigen kHz bei einer Wellenlänge von 780,24 Nanometern“, erklärt Kürbis. Alle Laser, ob zur Anregung der Rubidiumatome oder zur Detektion, müssen haargenau auf diese Wellenlänge abgestimmt werden. Hightech steckt aber nicht nur in den Dioden, sondern beispielsweise auch in den optischen Elementen wie Kollimationslinsen sowie in der Mikrointegration. „Das FBH ist eines der weltweit führenden Institute im Bereich der Entwicklung GaAs-basierter Diodenlaser“, so Wicht.

Ein transportfähiges Materiewellen-Interferometer könnte für die geophysikalische Erkundung Verwendung finden. Dabei sind sehr feine Variationen der Erdbeschleunigung an verschiedenen Orten relevant, etwa um unter der Oberfläche liegende Gesteine zu identifizieren. Wicht hält aber auch andere Anwendungen für denkbar: „Man kann auch Beschleunigungen und Rotationen sehr genau bestimmen. Besonders in Bereichen, in denen klassische Satellitennavigation nicht mehr funktioniert, etwa im Weltraum oder unter Wasser, können Materiewellen-Interferometer diese Aufgaben übernehmen.“

Kontakt:

Petra Immerz
Communications & Public Relations Manager
Ferdinand-Braun-Institut
Leibniz-Institut für Höchstfrequenztechnik
Gustav-Kirchhoff-Straße 4
12489 Berlin
Tel. +49.30.6392-2626
Fax +49.30.6392-2602
E-Mail petra.immerz@fbh-berlin.de
www.fbh-berlin.de
http://twitter.com/FBH_News

Christine Vollgraf | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.fbh-berlin.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Der überraschend schnelle Fall des Felix Baumgartner
14.12.2017 | Technische Universität München

nachricht Eine blühende Sternentstehungsregion
14.12.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik