Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenmechanik in eisiger Kälte

28.06.2012
Das Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) arbeitet im EU-Verbundprojekt iSense am Prototyp eines tragbaren, integrierten Quantensensors, der auf ultrakalten Atomen basiert. Dieser könnte beispielsweise die Erdbeschleunigung messen – in hoher Genauigkeit und an jedem Ort der Erde.

Eine kleine Wolke Rubidium-Atome treibt durch eine Vakuumkammer, die Temperatur liegt nur wenige millionstel Grad über dem absoluten Nullpunkt. Ein Raster aus Laserlicht hält die Atome in Position, damit sie von einem weiteren Laser mit Lichtpulsen beschossen werden können.


Mikro-integrierter Extended Cavity Diode Laser (ECDL) für die Spektroskopie an Rubidium Atomen.
Foto: FBH/schurian.com

Die Rubidium-Teilchen reagieren empfindlich auf die Laserblitze und teilen sich in verschiedene quantenmechanische Zustände auf. Ein dritter Laser detektiert die Veränderungen in der Atomwolke während eines Beschusses, der nur wenige Millisekunden andauert.

Was sich wie ein Experiment aus einem Science-Fiction-Film anhört, wird in mehreren Forschungseinrichtungen in Deutschland, Italien, Frankreich, Österreich und Großbritannien Realität. Die Partner im iSense-Verbundprojekt erarbeiten einen Sensor-Prototyp, der auf dem beschriebenen Aufbau beruht und der sich die quantenmechanischen Eigenschaften von Atomen im eisigen Vakuum zunutze macht. „Die Rubidium-Atome kann man mit einem geeigneten Lichtpuls teilen, nicht im Sinne einer Kernspaltung, sondern im quantenmechanischen Sinne“, erklärt FBH-Mitarbeiter Dr. Andreas Wicht.

„Dabei wird die Aufenthaltswahrscheinlichkeit eines Atoms an einem Ort mit einer Welle beschrieben, für ein geteiltes Atom habe ich dann zwei Teilwellen. Es befindet sich also nach den Gesetzen der Wahrscheinlichkeit an zwei Orten zugleich.“ Für einen kurzen Zeitraum sind beide Atomteile also an verschiedenen Stellen im Schwerefeld der Erde lokalisiert.

Dadurch weisen sie unterschiedliche Energieniveaus auf, was sich in einer abweichenden Schwingungsfrequenz niederschlägt. Wenn das Atom einem weiteren Lichtimpuls ausgesetzt wird und die Teilwellen wieder zusammenkommen, kann man eine Phasenverschiebung der Schwingungen detektieren. „Wir können dadurch auf die Differenz in der Energie der Atome rückschließen und kennen die Erdbeschleunigung, die auf die Atome an genau diesem Punkt der Erde wirkt“, sagt Wicht. Da das System die Welleneigenschaften der ultrakalten Materie im Hochvakuum nutzt, nennt man es Materiewellen-Interferometer.

„Ein Materiewellen-Interferometer ist äußerst komplex konstruiert, weshalb es bisher sehr viel Platz benötigt und nur in Laboren aufgebaut werden kann“, ergänzt Christian Kürbis, der am FBH als Doktorand im iSense-Projekt arbeitet. Das Ziel der Verbundpartner ist es daher, alle Komponenten zu miniaturisieren und in einem handlichen, tragbaren Prototyp zu integrieren.

Das FBH liefert dafür mehrere mikro-integrierte Diodenlaser, die auf die besonderen Anforderungen hin optimiert wurden. „Unsere ECDL-Lasermodule sind extrem stabil, mit achtmal zweieinhalb Zentimetern Grundfläche sehr kompakt und haben eine schmale Linienbreite von wenigen kHz bei einer Wellenlänge von 780,24 Nanometern“, erklärt Kürbis. Alle Laser, ob zur Anregung der Rubidiumatome oder zur Detektion, müssen haargenau auf diese Wellenlänge abgestimmt werden. Hightech steckt aber nicht nur in den Dioden, sondern beispielsweise auch in den optischen Elementen wie Kollimationslinsen sowie in der Mikrointegration. „Das FBH ist eines der weltweit führenden Institute im Bereich der Entwicklung GaAs-basierter Diodenlaser“, so Wicht.

Ein transportfähiges Materiewellen-Interferometer könnte für die geophysikalische Erkundung Verwendung finden. Dabei sind sehr feine Variationen der Erdbeschleunigung an verschiedenen Orten relevant, etwa um unter der Oberfläche liegende Gesteine zu identifizieren. Wicht hält aber auch andere Anwendungen für denkbar: „Man kann auch Beschleunigungen und Rotationen sehr genau bestimmen. Besonders in Bereichen, in denen klassische Satellitennavigation nicht mehr funktioniert, etwa im Weltraum oder unter Wasser, können Materiewellen-Interferometer diese Aufgaben übernehmen.“

Kontakt:

Petra Immerz
Communications & Public Relations Manager
Ferdinand-Braun-Institut
Leibniz-Institut für Höchstfrequenztechnik
Gustav-Kirchhoff-Straße 4
12489 Berlin
Tel. +49.30.6392-2626
Fax +49.30.6392-2602
E-Mail petra.immerz@fbh-berlin.de
www.fbh-berlin.de
http://twitter.com/FBH_News

Christine Vollgraf | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.fbh-berlin.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Flashmob der Moleküle
19.01.2017 | Technische Universität Wien

nachricht Verkehrsstau im Nichts
19.01.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flashmob der Moleküle

19.01.2017 | Physik Astronomie

Tollwutviren zeigen Verschaltungen im gläsernen Gehirn

19.01.2017 | Medizin Gesundheit

Fraunhofer-Institute entwickeln zerstörungsfreie Qualitätsprüfung für Hybridgussbauteile

19.01.2017 | Verfahrenstechnologie