Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenmagneten auf Wanderschaft

13.03.2013
LMU/MPQ-Wissenschaftler beobachten in einer Kette von ultrakalten Atomen die kohärente Ausbreitung von einzelnen quantenmagnetischen Störstellen.

Immer wieder entdecken Physiker Phänomene, die sie zunächst nicht erwartet hätten – etwa, dass manche Stoffe bei tiefen Temperaturen ihren elektrischen Widerstand fast vollständig verlieren, oder dass andere sogar bei überraschend hohen Temperaturen zu solchen Supraleitern werden.


Abb.1: Veranschaulichende Darstellung der Ausbreitung der Spin-Störung (rot) in einer Kette von Atomen, deren Spin anfänglich entgegengesetzt gerichtet ist.

Grafik: MPQ, Abt. Quanten-Vielteilchensysteme

Bislang waren es vor allem Theoretiker, die ungewöhnliche Eigenschaften mit eigens dafür entwickelten Modellen erklärten. Doch man kann nicht direkt nachschauen, wie der Ladungstransport in einem Festkörperkristall wirklich abläuft, denn dieser Prozess ereignet sich auf extrem kleinen Zeit- und Längenskalen. Ein Team um Prof. Immanuel Bloch (Lehrstuhl für Experimentalphysik an der Ludwig-Maximilians-Universität München und Direktor am MPQ) hat jetzt erstmals die kohärente Ausbreitung von einzelnen Spinanregungen in einem ultrakalten Quantengas aus stark korrelierten Atomen beobachtet (Nature Physics, Advance Online Publication, 24. Februar 2013).

Dies ist einer der elementaren Prozesse im Magnetismus von Quantensystemen. In enger Zusammenarbeit mit theoretischen Physikern der Ludwig-Maximilians-Universität und der Universität Genf konnten die Wissenschaftler auch zeigen, dass der Transport der Spin-Störung in schwächer korrelierten Systemen durch die Ausbildung von Quasiteilchen (sogenannten Polaronen) verlangsamt wird.

Festkörpereigenschaften wie Magnetismus, elektrische Leitfähigkeit oder Supraleitung sind durch das Verhalten der Elektronen in dem periodischen Kristallgitter bestimmt. Eine besondere Rolle spielt dabei der Eigendrehimpuls, der sogenannte Spin, der Elektronen. So führt man die Hochtemperatur-Supraleitung bestimmter Kupferverbindungen auf die Spin-Kopplung von stark korrelierten Elektronen zurück. Ultrakalte Atome in optischen Gittern sind ideale Systeme, um diese „quantenmagnetischen“ Phänomene unter kontrollierten experimentellen Bedingungen zu untersuchen.

Im vorliegenden Experiment kühlen die Wissenschaftler zunächst Rubidium-Atome auf eine Temperatur dicht oberhalb des absoluten Nullpunkts ab. Mit Hilfe von Lichtfeldern erreichen sie, dass sich die Atome nur noch entlang eindimensionaler, parallel verlaufender Röhren bewegen dürfen. Diesen Röhren wird eine stehende Laserwelle überlagert, so dass eine periodische Folge heller und dunkler Gebiete erzeugt wird – ein optisches Gitter, in dem auf jedem Gitterplatz genau ein Atom fest gehalten wird. Dieser perfekt geordnete Zustand wird nach dem britischen Physiker Sir Neville Mott als „Mott-Isolator“ bezeichnet. Auf diese Weise bildet sich schließlich eine Anordnung von parallel verlaufenden Ketten aus jeweils ca. fünfzehn Atomen aus.

Die Atome in dem optischen Gitter spielen die Rolle der Elektronen in dem Festkörpergitter, Genau wie diese sind sie durch einen Eigendrehimpuls, d.h. Spin, charakterisiert, jedoch können die Wissenschaftler auf den atomaren Spin, der sich (wie bei kleinen Magnetnadeln) in zwei entgegengesetzte Richtungen einstellen kann, direkt Einfluss nehmen. Anfangs sind alle Atome in dem Ensemble einheitlich ausgerichtet. Dann wird ein Atom in der Mitte jeder Kette zunächst mit einem Laserstrahl gezielt angesprochen und sein Spin wird durch Bestrahlen mit Mikrowellenpulsen umgeklappt. Nun verfolgen die Wissenschaftler, wie sich diese künstlich erzeugte Spin-Störung in dem eindimensionalen Gitter ausbreitet (siehe Abb. 1).

Mit Hilfe eines in der Gruppe entwickelten Abbildungsverfahrens, das einzelne Atome auf ihren Gitterplätzen mit hoher Auflösung sichtbar macht, wird der Ort der Störung nach unterschiedlichen Zeitabständen bestimmt, und zwar gleichzeitig für alle Ketten. Die daraus resultierenden Verteilungen weisen eine Struktur auf, wie sie aus der Interferenz kohärenter Wellen zu erwarten ist. „Die Ausbreitung der Spin-Störung führen wir auf den Mechanismus des „korrelierten Super-Austauschs“ zurück“, erklärt Dr. Christian Groß, Wissenschaftler am Experiment. „Wenn die Spin-Störung einen Platz nach rechts wandert, nimmt im Gegenzug das Nachbaratom dessen Platz ein. Da dieser Vorgang mit der gleichen Wahrscheinlichkeit gleichzeitig in der anderen Richtung stattfindet, kommt es zu der von uns beobachteten Interferenz. In einem klassischen System dagegen würde die Verteilung im Laufe der Zeit lediglich breiter werden. Wir haben damit den Beweis erbracht, dass sich die Spinwelle kohärent ausbreitet.“

In der Mott-Phase sind die Barrieren zwischen den Gitterplätzen so hoch, dass die Teilchen fest an ihre Plätze gebunden sind und lediglich der oben erwähnte korrelierte Superaustausch möglich ist. Wird die Gitterhöhe – d.h. die Intensität der Laserwelle – herunter gefahren, dann können die Teilchen unterhalb einer bestimmten Schwelle mit einer quantenmechanisch festgelegten Wahrscheinlichkeit zu ihren jeweiligen Nachbarplätzen hinüber „tunneln“. In dieser „suprafluiden Phase“ ist die Beweglichkeit der Atome eigentlich erhöht, allerdings wird die Ausbreitung der Störstelle – wie die Messungen zeigten – abgebremst. „Das liegt daran, dass die Tunnelprozesse die Wechselwirkung der Spin-Störung mit den Hintergrundatomen und deren Dynamik sehr viel komplexer machen“, erläutert Dr. Takeshi Fukuhara, der an dem Experiment als Postdoc forscht. „Im Endeffekt stößt die Spin-Störung unmittelbar benachbarte Teilchen von sich weg.“ Dadurch entsteht in dem „Bad“ aus Hintergrundatomen eine Vertiefung, die von der Störung mit geschleppt werden muss, wodurch diese schwerfälliger und auch langsamer wird. „Das ist so, wie wenn man sich auf dem Weg zur U-Bahn einen Weg durch einen Menschenmenge bahnen muss: auch das geht natürlich nur langsam, da man sich ständig aufs neue Platz schaffen, also ein „Loch“ mit sich ziehen muss“, führt Fukuhara aus. „Die in unserer Messung beobachtete Störstellenbewegung lässt sich mit der Entstehung von Quasiteilchen, den auch in der Festkörperphysik auftretenden Polaronen, erklären.“

Die hier beschriebenen Messungen sind unter zwei Aspekten von großer Bedeutung. Zum einen demonstrieren sie die herausragenden Kontrollmöglichkeiten von ultrakalten Quantensystemen, die die Grundlage für die Simulation von kollektiven Festkörperanregungen sind, insbesondere von quantenmagnetischen Phänomenen. Zum anderen geben sie einen direkten Einblick in die Prozesse, die dem Transport von elektrischen Ladungen und Störstellen in Festkörperkristallen zu Grunde liegen und letztendlich die makroskopisch beobachtbaren Eigenschaften von Stoffen festlegen. Olivia Meyer-Streng

Originalveröffentlichung:
Takeshi Fukuhara, Adrian Kantian, Manuel Endres, Marc Cheneau, Peter Schauß,
Sebastian Hild, David Bellem, Ulrich Schollwöck, Thierry Giamarchi, Christian Groß, Immanuel Bloch, und Stefan Kuhr
Quantum dynamics of a mobile spin impurity
Nature Physics, Advance Online Publication, 24. Februar 2013

Kontakt:
Prof. Dr. Immanuel Bloch
Lehrstuhl für Quantenoptik, LMU München
Schellingstr. 4, 80799 München, und
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Tel.: +49 (0) 89 / 32 905 -138
E-Mail: immanuel.bloch@mpq.mpg.de

Dr. Christian Groß
Max-Planck-Institut für Quantenoptik
Tel.: +49 (0) 89 / 32 905 -713
E-Mail: christian.gross@mpq.mpg.de

Dr. Takeshi Fukuhara
Max-Planck-Institut für Quantenoptik
Tel.: +49 (0) 89 / 32 905 -677
E-Mail: takeshi.fukuhara@mpq.mpg.de

Prof. Dr. Stefan Kuhr
University of Strathclyde
Department of Physics
107 Rottenrow East
Glasgow, U.K.
G4 0NG
Tel.: +44 141 548 3364
E-Mail: stefan.kuhr@strath.ac.uk

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften