Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenlimitierte Messmethode für Nanosensoren

12.10.2009
Wissenschaftlerteam am Max-Planck-Institut für Quantenoptik gelingt es, optische Methoden auf Nanomechanische Objekte anzuwenden.

Neue Fertigungstechniken ermöglichen es, mechanische Bauelemente auf Siliziumchips herzustellen, die nur noch Nanometer (ein Millionstel mm) groß sind. Ihre Anwendung ist allerdings noch dadurch eingeschränkt, dass keine ausreichend genauen Messverfahren für diese winzigen Bauteile zur Verfügung stehen.


Schema des Experiments: Die Nanosaiten (gelb) treten in Wechselwirkung mit dem optischen Nahfeld, das aus dem Toroid-Glasresonator (violett) dringt. Nähert man eine einzelne Saite dem Mikroresonator an, so verringert sich dessen optische Resonanzfrequenz exponentiell.
MPQ

Einen grundsätzlich neuen Ansatz hat jetzt ein Team um Prof. Tobias Kippenberg (Leiter der Nachwuchsgruppe "Laboratory of Photonics and Quantum Measurements" am Max-Planck-Institut für Quantenoptik in Garching und Tenure Track Assistant Professor an der Eidgenössischen Technischen Hochschule Lausanne) und Prof. Jörg Kotthaus (Professor an der LMU München) am MPQ erfolgreich getestet (Nature Physics, Advance Online Publication, DOI: 10.1038/NPHYS1425). Eine Schlüsselrolle darin spielen auf Siliziumchips gewachsene Glaszylinder mit einem Durchmesser von ca. 50 Mikrometern, die in ihrem Innern Licht für geraume Zeit speichern können. Wie die Wissenschaftler zeigten, können Nanooszillatoren mit dem aus dem Toroid dringenden optischen Nahfeld sowohl ausgelesen als auch zu Schwingungen angeregt werden.

Die Genauigkeit dieser Messungen ist nur durch die Quantenfluktuationen des Lichts limitiert. Bereits bei Raumtemperatur werden deshalb Empfindlichkeiten erreicht, die in der Größenodnung des quantenmechanischen Grundzustandsrauschens der Oszillatoren sind, d.h. dem Standard-Quantenlimit entsprechen. Die neue Messmethode ist somit für die Grundlagenforschung von großem Interesse. Aber auch Anwendungen wie der Nachweis einzelner Atome bzw. Ladungen oder auch die Massenspektrometrie können von den Messungen profitieren.

Nanomechanische Oszillatoren sind ideale Kandidaten, um die Quantengrenzen mechanischer Schwingungen experimentell zu testen. Darüber hinaus sind sie die Grundlage für eine Reihe von Präzisionsmessungen und ein fester Bestandteil in Magnetkraft- und Rasterkraftmikroskopen. In den vergangenen 10 Jahren wurde der Entwicklung empfindlicher Auslesetechniken für immer kleinere und dadurch sensitivere Oszillatoren eine hohe Aufmerksamkeit geschenkt. Optische Methoden erreichten hierbei die besten Werte, waren aber auf Objekte größer als die Wellenlänge beschränkt. Für nanoskalige Objekte anwendbare, elektronische Methoden erreichten bisher nur eingeschränkte Präzision.

Die MPQ und LMU-Physiker haben jetzt erstmals erfolgreich optische Methoden auf nanoskalige Oszillatoren angewandt. Dies ist so ohne weiteres nicht möglich, da es, sobald die Objekte kleiner als die Wellenlänge des Lichtes sind, zu Beugungsverlusten kommt. Im vorliegenden Experiment wird dieses Problem dadurch umgangen, dass im optischen Nahfeld gearbeitet wird. Schlüsselbaustein ist ein zylindrischer Resonator aus Glas mit einem Durchmesser von ca. 50 Mikrometern. Dieses Mikrotoroid kann Licht speichern, wenn dessen Wellenlänge hineinpasst, d.h. in einem ganzzahligen Verhältnis zum optischen Umfang des Resonators steht. Ein kleiner Teil des gespeicherten Lichts, das sogenannte Nahfeld, "leckt" aus dem Resonator heraus und dient als Messsonde für die Nanooszillatoren (s. Abbildung) - eine Anordnung parallel gespannter Siliziumnitrid- Saiten, die typischerweise 100 Nanometer mal 500 Nanometer dick und 15 bis 40 Mikrometer lang sind. (Nanosaiten und Mikrotoroide wurden in den Reinräumen von Prof. Kotthaus an der LMU und an der ETH Lausanne hergestellt.)

Bringt man die Nanoszillatoren in das Nahfeld, das sich einige Hundert Nanometer weit von der Oberfläche der Toroide erstreckt, so können sie mit dem Mikrotoroid wechselwirken. Die Nanooszillatoren wirken dabei auf das optische Nahfeld wie ein Dielektrikum, d.h. sie verändern lokal den Brechungsindex. Dies führt wiederum zu einer Verschiebung des optischen Umfangs und damit der Resonanzfrequenzen des Mikrotoroids.

Die Verschiebung der optischen Resonanzen durch die Nanooszillatoren ist hierbei so groß, dass allein deren Brownsche Bewegung einen starken, deutlich messbaren Einfluss hat und die Bewegung der Saiten mit hoher Empfindlichkeit gemessen werden kann. Die dabei erreichte Empfindlichkeit für Abstandsänderungen ist von der gleichen Größenordnung wie die quantenmechanisch bedingten Fluktuationen, die man für nanomechanische Oszillatoren beim absoluten Temperaturnullpunkt erwartet und welche dem sogenannten Standard-Quantenlimit für Abstandsmessungen entsprechen.

Die hohe Empfindlichkeit auf die Bewegung nanoskaliger Objekte sei allerdings nur ein Aspekt des neuen Verfahrens, betont Georg Anetsberger, der in der Gruppe von Prof. Kippenberg promoviert. Ebenso wichtig sei der erstmalige Nachweis, dass auch nanoskalige Objekte durch die Kraft von Photonen, den Strahlungsdruck, direkt beeinflusst, z.B. gekühlt in Schwingung versetzt werden können. "Wir beobachten, dass die Dipolkraft des optischen Nahfelds zu einer dynamischen Rückwirkung führt, welche die Nanosaiten zu kohärenten laserähnlichen Schwingungen anregt."

Die hier verwendete Methode lässt sich praktisch auf alle nanoskaligen mechanischen Oszillatoren anwenden, was deren Einsatz als hochempfindliche Sensoren, weiter verbessern könnte. Für Prof. Kippenberg zeigt sich daran wieder einmal die Vielseitigkeit der Mikrotoroide, die seit einigen Jahren im Zentrum seiner Forschung stehen. "Wir haben hier eine experimentelle Plattform entwickelt, die die Anwendungsmöglichkeiten nanomechanischer Bauelemente deutlich erweitern könnte. Zudem bietet sie eine Schnittstelle, an der Photonen und Phononen so optimiert miteinander wechselwirken, dass quantenmechanische Effekte bei Raumtemperatur messbar werden könnten."

[Olivia Meyer-Streng/Georg Anetsberger]

Originalveröffentlichung:
G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M.Weig, J. P. Kotthaus und T. J. Kippenberg
Near-field cavity optomechanics with nanomechanical oscillators
Nature Physics, Advance Online Publication, DOI: 10.1038/NPHYS1425
Kontakt:
Prof. Dr. Tobias Kippenberg
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49 - 89 / 32905 727
Fax: +49 - 89 / 32905 200
E-Mail: tobias.kippenberg@mpq.mpg.de
http://www.mpq.mpg.de/k-lab/
Georg Anetsberger
Max-Planck-Institut für Quantenoptik
Tel.: +49 - 89 / 32905 334
Fax: +49 - 89 / 32905 200
E-Mail: georg.anetsberger@mpq.mpg.de
Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Tel.: +49 - 89 / 32905 213
Fax: +49 - 89 / 32905 200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpq.mpg.de/k-lab/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise