Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenkondensate unter Schallwellen

22.09.2010
Physiker aus dem Paul-Drude-Institut für Festkörperelektronik können in einem Halbleiter exotische Quantenzustände erzeugen und diese mit Schallwellen sogar in kleinere Teile „zerschneiden“. Sie berichten darüber in Physical Review Letters.

Atome, die bei tiefen Temperaturen nahe dem absoluten Nullpunkt zu einer Art Superatom verschmelzen, kannten Physiker bis vor wenigen Jahren nur bei atomaren Gasen als sogenanntes Bose-Einstein-Kondensat (BEC). Forscher des Paul-Drude-Instituts für Festkörperelektronik (PDI) in Zusammenarbeit mit der Universität Sheffield und der École Polytechnique Fédérale de Lausanne erzeugen ähnliche Zustände im Festkörper und manipulieren sie mit Schallwellen.

Die Quantenkondensate im Festkörper werden in einem besonderen Materialsystem erzeugt: Durch spezielle Techniken beim Wachstum von Halbleiterschichten können Forscher künstliche Kristalle herstellen, die sich wie zwei Spiegel gegenüber stehen. In einer extrem dünnen Schicht dazwischen wird Licht hin und her reflektiert. Gleichzeitig sind in dieser Schicht auch Elektronen (negative Ladungen) und Löcher (positive Ladungen) gefangen. Photonen, also die Lichtteilchen, werden dabei von Elektronen-Loch-Paaren (Exzitonen) absorbiert und wieder emittiert. Das System schwingt sehr schnell von dem Zustand ‚Licht’ zum Zustand ‚Exzitonen’ und ist somit stark gekoppelt, etwa so wie zwei Pendel, die durch eine Feder verbunden sind. Deshalb sprechen die Physiker anstatt von getrennten Photonen und Elektronen-Loch-Paaren von „Quasiteilchen“, die sie Polaritonen nennen.

Diese faszinierenden Licht-Materie-Hybrid-Partikel besitzen Eigenschaften, die sie sehr interessant machen. „Wenn viele Polaritonen zusammen sind, beginnen sie miteinander zu ‚kommunizieren‘ – sie sind nicht mehr unabhängig, sondern bilden schließlich ein einziges Riesenpolariton, das aus tausenden nicht mehr unterscheidbaren Teilchen besteht“, beschreibt Edgar Cerda vom PDI diesen Zustand. Das entstehende Riesenpolariton kann wie ein einziges Teilchen mit gut definierten quantenmechanischen Eigenschaften betrachtet werden. Solch ein makroskopischer Quantenzustand der Materie wurde von Bose und Einstein im Jahr 1924 vorausgesagt, seine Existenz aber experimentell erst 1995 mit einem Gas aus Rubidiumatomen bestätigt. Seither kennt man diesen Zustand vor allem bei atomaren Gasen bei Temperaturen in der Nähe des absoluten Nullpunktes (nano Kelvin). Polaritonenkondensate im Festkörper konnten erst in den letzten vier Jahren nachgewissen werden – und zwar bereits bei viel höheren Temperaturen bis hin zur Zimmertemperatur. Sie unterscheiden sich von denen in der Gasphase aber in ihren physikalischen Eigenschaften, so sind sie zum Beispiel viel kurzlebiger und leichter als die Kondensate aus Atomen, da sie aus den wesentlich leichteren Elektronen und Photonen bestehen.

Es ist bekannt, dass sich die ‚konventionellen’ makroskopischen atomaren Kondensate mit Lichtfeldern in eine periodische Anordnung bringen lassen. Die PDI-Forscher haben nun gezeigt, dass man etwas Ähnliches mit Polaritonenkondensaten machen kann. Hier wird allerdings nicht Licht eingestrahlt, sondern eine Schallwelle. Die Wellen laufen wie bei einem Erdbeben durch das Material und drücken es periodisch zusammen. In der geordneten Struktur der Wellentäler entsteht ein Potenzial, in dem sich das Kondensat sammelt. „Wir können die Höhe der Hindernisse zwischen den Kondensaten sehr fein steuern und so die Wechselwirkung zwischen ihnen einstellen. In einem Extremfall sind die Wellenberge so flach, dass das Kondensat stark wechselwirkt und sich wie ein einziges System verhält, im anderen Extremfall so hoch, dass sich die Kondensate in den Wellentälern gegenseitig nicht mehr beinflussen“, so Cerda. Die Forscher haben dabei zeigen können, dass die kleineren Kondensate ihre quantenmechanischen Eigenschaften behalten.

„Unsere Experimente zeigen, wie man solche makroskopischen Quantenzustände beeinflussen kann“, sagt Cerda. Dabei sind diese Zustände deshalb besonders interessant, weil sie im Festkörper entstehen, im Gegensatz zum ‚konventionellen’ BEC, das nur in der Gasphase existiert. Die Experimente wurden bei Tieftemperaturen von flüssigem Helium (vier Kelvin) durchgeführt. Die akustische Kontrolle des makroskopischen Quantenzustands bei Raumtemperatur, der sich tatsächlich mit anderen Halbleitermaterialien realisieren läßt, wäre ein wichtiger Schritt in Richtung Festkörper-Quantenchip. Hieran arbeiten die Wissenschaftler nun.

Phys. Rev. Lett. 105, 116402 (2010)

Kontakt:
Dr. Edgar A. Cerda Mendez, Tel.: 030-20377 504, edgar.cerda.mendez@pdi-berlin.de
Dr. Paulo Ventura Santos, Tel.: 030-20377 221, paulo.santos@pdi-berlin.de
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin

Christine Vollgraf | idw
Weitere Informationen:
http://www.pdi-berlin.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MAIUS-1 – erste Experimente mit ultrakalten Atomen im All
24.01.2017 | Leibniz Universität Hannover

nachricht European XFEL: Forscher können erste Vorschläge für Experimente einreichen
24.01.2017 | European XFEL GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie