Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenkondensate unter Schallwellen

22.09.2010
Physiker aus dem Paul-Drude-Institut für Festkörperelektronik können in einem Halbleiter exotische Quantenzustände erzeugen und diese mit Schallwellen sogar in kleinere Teile „zerschneiden“. Sie berichten darüber in Physical Review Letters.

Atome, die bei tiefen Temperaturen nahe dem absoluten Nullpunkt zu einer Art Superatom verschmelzen, kannten Physiker bis vor wenigen Jahren nur bei atomaren Gasen als sogenanntes Bose-Einstein-Kondensat (BEC). Forscher des Paul-Drude-Instituts für Festkörperelektronik (PDI) in Zusammenarbeit mit der Universität Sheffield und der École Polytechnique Fédérale de Lausanne erzeugen ähnliche Zustände im Festkörper und manipulieren sie mit Schallwellen.

Die Quantenkondensate im Festkörper werden in einem besonderen Materialsystem erzeugt: Durch spezielle Techniken beim Wachstum von Halbleiterschichten können Forscher künstliche Kristalle herstellen, die sich wie zwei Spiegel gegenüber stehen. In einer extrem dünnen Schicht dazwischen wird Licht hin und her reflektiert. Gleichzeitig sind in dieser Schicht auch Elektronen (negative Ladungen) und Löcher (positive Ladungen) gefangen. Photonen, also die Lichtteilchen, werden dabei von Elektronen-Loch-Paaren (Exzitonen) absorbiert und wieder emittiert. Das System schwingt sehr schnell von dem Zustand ‚Licht’ zum Zustand ‚Exzitonen’ und ist somit stark gekoppelt, etwa so wie zwei Pendel, die durch eine Feder verbunden sind. Deshalb sprechen die Physiker anstatt von getrennten Photonen und Elektronen-Loch-Paaren von „Quasiteilchen“, die sie Polaritonen nennen.

Diese faszinierenden Licht-Materie-Hybrid-Partikel besitzen Eigenschaften, die sie sehr interessant machen. „Wenn viele Polaritonen zusammen sind, beginnen sie miteinander zu ‚kommunizieren‘ – sie sind nicht mehr unabhängig, sondern bilden schließlich ein einziges Riesenpolariton, das aus tausenden nicht mehr unterscheidbaren Teilchen besteht“, beschreibt Edgar Cerda vom PDI diesen Zustand. Das entstehende Riesenpolariton kann wie ein einziges Teilchen mit gut definierten quantenmechanischen Eigenschaften betrachtet werden. Solch ein makroskopischer Quantenzustand der Materie wurde von Bose und Einstein im Jahr 1924 vorausgesagt, seine Existenz aber experimentell erst 1995 mit einem Gas aus Rubidiumatomen bestätigt. Seither kennt man diesen Zustand vor allem bei atomaren Gasen bei Temperaturen in der Nähe des absoluten Nullpunktes (nano Kelvin). Polaritonenkondensate im Festkörper konnten erst in den letzten vier Jahren nachgewissen werden – und zwar bereits bei viel höheren Temperaturen bis hin zur Zimmertemperatur. Sie unterscheiden sich von denen in der Gasphase aber in ihren physikalischen Eigenschaften, so sind sie zum Beispiel viel kurzlebiger und leichter als die Kondensate aus Atomen, da sie aus den wesentlich leichteren Elektronen und Photonen bestehen.

Es ist bekannt, dass sich die ‚konventionellen’ makroskopischen atomaren Kondensate mit Lichtfeldern in eine periodische Anordnung bringen lassen. Die PDI-Forscher haben nun gezeigt, dass man etwas Ähnliches mit Polaritonenkondensaten machen kann. Hier wird allerdings nicht Licht eingestrahlt, sondern eine Schallwelle. Die Wellen laufen wie bei einem Erdbeben durch das Material und drücken es periodisch zusammen. In der geordneten Struktur der Wellentäler entsteht ein Potenzial, in dem sich das Kondensat sammelt. „Wir können die Höhe der Hindernisse zwischen den Kondensaten sehr fein steuern und so die Wechselwirkung zwischen ihnen einstellen. In einem Extremfall sind die Wellenberge so flach, dass das Kondensat stark wechselwirkt und sich wie ein einziges System verhält, im anderen Extremfall so hoch, dass sich die Kondensate in den Wellentälern gegenseitig nicht mehr beinflussen“, so Cerda. Die Forscher haben dabei zeigen können, dass die kleineren Kondensate ihre quantenmechanischen Eigenschaften behalten.

„Unsere Experimente zeigen, wie man solche makroskopischen Quantenzustände beeinflussen kann“, sagt Cerda. Dabei sind diese Zustände deshalb besonders interessant, weil sie im Festkörper entstehen, im Gegensatz zum ‚konventionellen’ BEC, das nur in der Gasphase existiert. Die Experimente wurden bei Tieftemperaturen von flüssigem Helium (vier Kelvin) durchgeführt. Die akustische Kontrolle des makroskopischen Quantenzustands bei Raumtemperatur, der sich tatsächlich mit anderen Halbleitermaterialien realisieren läßt, wäre ein wichtiger Schritt in Richtung Festkörper-Quantenchip. Hieran arbeiten die Wissenschaftler nun.

Phys. Rev. Lett. 105, 116402 (2010)

Kontakt:
Dr. Edgar A. Cerda Mendez, Tel.: 030-20377 504, edgar.cerda.mendez@pdi-berlin.de
Dr. Paulo Ventura Santos, Tel.: 030-20377 221, paulo.santos@pdi-berlin.de
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin

Christine Vollgraf | idw
Weitere Informationen:
http://www.pdi-berlin.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor
23.02.2017 | Universität Bayreuth

nachricht Kühler Zwerg und die sieben Planeten
23.02.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie