Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenkondensate unter Schallwellen

22.09.2010
Physiker aus dem Paul-Drude-Institut für Festkörperelektronik können in einem Halbleiter exotische Quantenzustände erzeugen und diese mit Schallwellen sogar in kleinere Teile „zerschneiden“. Sie berichten darüber in Physical Review Letters.

Atome, die bei tiefen Temperaturen nahe dem absoluten Nullpunkt zu einer Art Superatom verschmelzen, kannten Physiker bis vor wenigen Jahren nur bei atomaren Gasen als sogenanntes Bose-Einstein-Kondensat (BEC). Forscher des Paul-Drude-Instituts für Festkörperelektronik (PDI) in Zusammenarbeit mit der Universität Sheffield und der École Polytechnique Fédérale de Lausanne erzeugen ähnliche Zustände im Festkörper und manipulieren sie mit Schallwellen.

Die Quantenkondensate im Festkörper werden in einem besonderen Materialsystem erzeugt: Durch spezielle Techniken beim Wachstum von Halbleiterschichten können Forscher künstliche Kristalle herstellen, die sich wie zwei Spiegel gegenüber stehen. In einer extrem dünnen Schicht dazwischen wird Licht hin und her reflektiert. Gleichzeitig sind in dieser Schicht auch Elektronen (negative Ladungen) und Löcher (positive Ladungen) gefangen. Photonen, also die Lichtteilchen, werden dabei von Elektronen-Loch-Paaren (Exzitonen) absorbiert und wieder emittiert. Das System schwingt sehr schnell von dem Zustand ‚Licht’ zum Zustand ‚Exzitonen’ und ist somit stark gekoppelt, etwa so wie zwei Pendel, die durch eine Feder verbunden sind. Deshalb sprechen die Physiker anstatt von getrennten Photonen und Elektronen-Loch-Paaren von „Quasiteilchen“, die sie Polaritonen nennen.

Diese faszinierenden Licht-Materie-Hybrid-Partikel besitzen Eigenschaften, die sie sehr interessant machen. „Wenn viele Polaritonen zusammen sind, beginnen sie miteinander zu ‚kommunizieren‘ – sie sind nicht mehr unabhängig, sondern bilden schließlich ein einziges Riesenpolariton, das aus tausenden nicht mehr unterscheidbaren Teilchen besteht“, beschreibt Edgar Cerda vom PDI diesen Zustand. Das entstehende Riesenpolariton kann wie ein einziges Teilchen mit gut definierten quantenmechanischen Eigenschaften betrachtet werden. Solch ein makroskopischer Quantenzustand der Materie wurde von Bose und Einstein im Jahr 1924 vorausgesagt, seine Existenz aber experimentell erst 1995 mit einem Gas aus Rubidiumatomen bestätigt. Seither kennt man diesen Zustand vor allem bei atomaren Gasen bei Temperaturen in der Nähe des absoluten Nullpunktes (nano Kelvin). Polaritonenkondensate im Festkörper konnten erst in den letzten vier Jahren nachgewissen werden – und zwar bereits bei viel höheren Temperaturen bis hin zur Zimmertemperatur. Sie unterscheiden sich von denen in der Gasphase aber in ihren physikalischen Eigenschaften, so sind sie zum Beispiel viel kurzlebiger und leichter als die Kondensate aus Atomen, da sie aus den wesentlich leichteren Elektronen und Photonen bestehen.

Es ist bekannt, dass sich die ‚konventionellen’ makroskopischen atomaren Kondensate mit Lichtfeldern in eine periodische Anordnung bringen lassen. Die PDI-Forscher haben nun gezeigt, dass man etwas Ähnliches mit Polaritonenkondensaten machen kann. Hier wird allerdings nicht Licht eingestrahlt, sondern eine Schallwelle. Die Wellen laufen wie bei einem Erdbeben durch das Material und drücken es periodisch zusammen. In der geordneten Struktur der Wellentäler entsteht ein Potenzial, in dem sich das Kondensat sammelt. „Wir können die Höhe der Hindernisse zwischen den Kondensaten sehr fein steuern und so die Wechselwirkung zwischen ihnen einstellen. In einem Extremfall sind die Wellenberge so flach, dass das Kondensat stark wechselwirkt und sich wie ein einziges System verhält, im anderen Extremfall so hoch, dass sich die Kondensate in den Wellentälern gegenseitig nicht mehr beinflussen“, so Cerda. Die Forscher haben dabei zeigen können, dass die kleineren Kondensate ihre quantenmechanischen Eigenschaften behalten.

„Unsere Experimente zeigen, wie man solche makroskopischen Quantenzustände beeinflussen kann“, sagt Cerda. Dabei sind diese Zustände deshalb besonders interessant, weil sie im Festkörper entstehen, im Gegensatz zum ‚konventionellen’ BEC, das nur in der Gasphase existiert. Die Experimente wurden bei Tieftemperaturen von flüssigem Helium (vier Kelvin) durchgeführt. Die akustische Kontrolle des makroskopischen Quantenzustands bei Raumtemperatur, der sich tatsächlich mit anderen Halbleitermaterialien realisieren läßt, wäre ein wichtiger Schritt in Richtung Festkörper-Quantenchip. Hieran arbeiten die Wissenschaftler nun.

Phys. Rev. Lett. 105, 116402 (2010)

Kontakt:
Dr. Edgar A. Cerda Mendez, Tel.: 030-20377 504, edgar.cerda.mendez@pdi-berlin.de
Dr. Paulo Ventura Santos, Tel.: 030-20377 221, paulo.santos@pdi-berlin.de
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin

Christine Vollgraf | idw
Weitere Informationen:
http://www.pdi-berlin.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise