Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenkommunikation in „Zufallsnetzwerken“

21.05.2010
Physiker am MPQ entdecken überraschendes Verhalten von Quanten-Zufallsnetzwerken.

Im Prinzip ist jedermann über mehrere Ecken mit einer berühmten Persönlichkeit bekannt oder verwandt. Dass die „Welt so klein ist“, zeigten Studien, die sich mit dem Verhalten komplexer Netzwerke beschäftigen. Beispiele für Netzwerke dieser Art sind unter anderen das Internet oder das öffentliche Telefonnetz.


Modell eines Quanten-Zufallsnetzes

Erstmals hat nun eine Gruppe um Prof. Ignacio Cirac, Direktor am Max-Planck-Institut für Quantenoptik (Garching bei München) und Leiter der Abteilung Theorie, das Verhalten komplexer Netzwerke im Mikrokosmos, d.h. in der Quantenwelt untersucht (Nature Physics, Advanced Online Publication, DOI:10.1038/NPHYS1665). Ein überraschendes Ergebnis war, dass es - im Gegensatz zu klassischen Netzwerken - selbst im Fall sehr schwacher Verknüpfung zwischen den Knoten möglich ist, bei der Ausführung einfacher Aufgaben beliebig komplexe Kommunikationsmuster zu erzeugen.

Die Eigenschaften von Netzwerken sind im Rahmen der klassischen statistischen Mechanik bereits ausführlich untersucht worden. In einem periodischen Netzwerk sind die Knotenpunkte per Definition in einer regelmäßigen Struktur angeordnet, und jeder Knoten ist mit einer festen Zahl von „geometrischen“ Nachbarn verbunden. Wenn periodische Netzwerke vergrößert werden, ändert sich ihre Topologie nicht, da lediglich diese Einheitszelle immer wieder hinzugefügt wird. Zufallsnetzwerke sind ganz anders aufgebaut: jeder einzelne Knoten ist mit einer festgelegten Wahrscheinlichkeit mit jedem beliebigen anderen Knoten im Netzwerk verknüpft. Abhängig von der Verbindungswahrscheinlichkeit treten in diesen Netzwerken im Grenzfall unendlicher Ausdehnung einige charakteristische Effekte auf. Im Fall einer ausreichend hohen Verbindungswahrscheinlichkeit sind fast alle Knoten als ein Teil eines riesigen Clusters zu betrachten; ist die Wahrscheinlichkeit für Verknüpfungen jedoch sehr gering, dann gibt es nur einige spärlich verteilte Gruppen von miteinander verknüpften Knoten.

In einem Quantennetzwerk wird eine Verknüpfung zwischen benachbarten Knoten (die „Kante“) durch genau ein Paar miteinander verschränkter Quanten-Bits (z.B. Atomen) hergestellt; anders ausgedrückt, ein Link in einem Quantennetzwerk repräsentiert die Verschränkung von zwei Quanten-Bits. Daher besitzt ein Knotenpunkt für jeden Nachbarn, zu dem er eine Verbindung aufbauen kann, genau ein Quanten-Bit; die verschiedenen Quanten-Bits können an dem Knotenpunkt manipuliert werden. Dies gilt generell für alle Arten von Quantennetzwerken. Allerdings gibt es verschiedene Möglichkeiten, die Verschränkung zwischen den benachbarten Quanten-Bits zu definieren. Bislang wurden Quanten-Netzwerke zumeist als periodisch strukturierte Graphen modelliert. In der hier zitierten Arbeit jedoch haben die Wissenschaftler das Ausmaß der Verschränkung zwischen zwei Knoten so gesetzt, dass sie der Verbindungswahrscheinlichkeit klassischer Zufallsgraphen entspricht.

Im klassischen Fall treten, wenn man die Verbindungswahrscheinlichkeiten mit der Größe des Netzwerkes skalieren lässt, plötzlich charakteristische Untergraphen auf: bei sehr niedrigen Wahrscheinlichkeiten kommen nur einfache (triviale) Links vor. Bei hohen Verbindungswahrscheinlichkeiten entstehen Graphen immer höherer Komplexität, wie etwa Dreiecke, Vierecke oder Sterne. Quantennetzwerke weisen ein ganz anderes Verhaltensmuster auf. Selbst bei extrem geringer Verschränkung zwischen den Knoten, die auf den ersten Blick allenfalls für eine einfache Verbindung ausreichen würde, lassen sich Untergraphen beliebig hoher Komplexität erzeugen. Dies ist vor allem eine Konsequenz des quantenmechanischen Superpositionsprinzips und der Möglichkeit, die Quantenbits an den Knotenpunkten kohärent zu manipulieren.

„In unserer Arbeit möchten wir zum einen deutlich machen, dass wir auch im Kontext der Quantenkommunikation Netzwerke mit ungeordneten Strukturen und keine periodischen Gitter untersuchen müssen”, erläutert Sébastien Perseguers, der dieses Thema im Rahmen seiner Doktorarbeit behandelt hat. „Wir wissen, dass Kommunikationsnetzwerke in der realen Welt eine komplexe Topologie besitzen, und höchstwahrscheinlich trifft das auch auf Quantennetzwerke zu. Zum andern möchten wir betonen, dass wir nicht nur bezüglich der Verknüpfungen zwischen den Knoten, sondern auch mit Blick auf das globale Netzwerk „Quantendenken“ an den Tag legen sollten. Ganz wichtig ist dabei die Beantwortung der Frage, was passiert, wenn man Verschränkungen über mehr als zwei Knoten zulässt.“ In naher Zukunft wollen die Wissenschaftler ihr Modell auch auf komplexe Netzwerke mit vielfältigeren Strukturen ausdehnen, wie man sie für die Beschreibung von Systemen in der Natur oder der Gesellschaft verwendet. Sie erwarten, dort auf eine Reihe weiterer überraschender Phänomene zu stoßen. Olivia Meyer-Streng

Originalveröffentlichung:
S. Perseguers, M. Lewenstein, A. Acín and J.I. Cirac
Quantum random networks
Nature Physics, Advanced Online Publication, DOI:10.1038/NPHYS1665
Kontakt:
Prof. Dr. Ignacio Cirac
Honorarprofessor, Technische Universität München
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49 - 89 / 32905 705 / 736
Fax: +49 - 89 / 32905 336
E-Mail: ignacio.cirac@mpq.mpg.de
Sébastien Perseguers
Max-Planck-Institut für Quantenoptik
Tel.:+49 - 89 / 32905 345
Fax: +49 - 89 / 32905 336
E-Mail: sebastien.perseguers@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de/
http://www.mpq.mpg.de/Theorygroup/CIRAC

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenkommunikation in freier Luft nimmt Fahrt auf
24.07.2017 | Österreichische Akademie der Wissenschaften

nachricht Neue Harmonien in der Optoelektronik
21.07.2017 | Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Recherche-Reise zum European XFEL und DESY nach Hamburg

24.07.2017 | Veranstaltungen

Internationale Konferenz zu Sprachdialogsystemen und Mensch-Maschine-Kommunikation in Saarbrücken

24.07.2017 | Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Power-to-Liquid: 200 Liter Sprit aus Solarstrom und dem Kohlenstoffdioxid der Umgebungsluft

24.07.2017 | Energie und Elektrotechnik

Innovationsindikator 2017: Deutschland auf Platz vier von 35, bei der Digitalisierung nur Rang 17

24.07.2017 | Studien Analysen

Netzwerke statt Selbstversorgung: Wiesenorchideen überraschen Bayreuther Forscher

24.07.2017 | Biowissenschaften Chemie