Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenkommunikation mit einem Satelliten

06.07.2017

Mit der Übertragung von Quanteninformation aus dem Orbit wird Quantenkryptografie künftig in der weltweiten Kommunikation möglich

Was als exotische Forschung in physikalischen Labors begann, könnte bald die weltweite Kommunikation sensibler Daten verändern: die Quantenkryptografie.


Vielseitiger als gedacht: Ein Teil des Alphasat I-XL ist eigentlich für die Demonstration der Datenübertragung zwischen den Erdbeobachtungssatelliten des europäischen Copernicus-Projekts und der Erde entwickelt worden, diente einer Gruppe um den Forschern des Max-Planck-Instituts für die Physik des Lichts nun aber dazu, die Messung von Quantenzuständen nach einen 38000 Kilometer langen Übertragungsweg zu testen.

© ESA


Laserkommunikation mit dem Orbit: Die Infrarotaufnahme zeigt die Bodenstation für die Kommunikation mit dem 38000 Kilometer entfernten Satelliten Alphasat I-XL. Der Empfänger schickt einen infraroten Laserstrahl Richtung Umlaufbahn, damit der Satellit ihn findet. Weil der Strahl an einer oberen Luftschicht gestreut wird erscheint er als größerer Fleck.

© Imran Khan, MPI für die Physik des Lichts

Die jüngste Arbeit, die ein Team um Christoph Marquardt und Gerd Leuchs am Max-Planck-Institut für die Physik des Lichts in Erlangen auf diesem Gebiet nun vorstellen, dürfte das seit etwa zwei Jahren rapide gewachsene Interesse nicht zuletzt von Telekommunikationsunternehmen, Banken und Regierungseinrichtungen an der Technik noch einmal beflügeln.

Denn die Physiker haben zusammen mit der Firma Tesat-Spacecom und dem Deutschen Zentrum für Luft- und Raumfahrt jetzt eine Voraussetzung geschaffen, um mithilfe der Quantenkryptografie auch über große Strecken abhörsicher zu kommunizieren.

Sie haben die Quantenzustände von Lichtsignalen gemessen, die von einem 38 000 Kilometer entfernten, geostationären Kommunikationssatelliten gesendet wurden. Die Physiker sind daher zuversichtlich, dass sich aufbauend auf der etablierten Satellitentechnik innerhalb weniger Jahre ein weltweites abhörsicheres Kommunikationsnetz errichten ließe.

Sensible Daten beispielsweise von Banken, staatlichen Institutionen oder im Gesundheitssektor dürfen nicht in fremde Hände geraten. Moderne Verschlüsselungstechniken sind zwar sehr weit fortgeschritten, lassen sich aber doch in vielen Fällen mit entsprechend hohem Aufwand überwinden. Und vor einem zukünftigen Quantencomputer wäre wohl kein gebräuchliches Verschlüsselungsverfahren sicher.

Dessen Realisierung betrachtete man bisher noch in weiter Ferne, erhebliche Fortschritte in der jüngsten Vergangenheit machen Physikern jedoch Hoffnung. „Ein Quantencomputer könnte dann auch gespeicherte Daten aus der heutigen Zeit knacken“, sagt Christoph Marquardt, Leiter einer Arbeitsgruppe in der Abteilung von Gern Leuchs am Max-Planck-Institut für die Physik des Lichts. „Deswegen entwickeln wir mit der Quantenkryptografie jetzt schon eine abhörsichere Methode des Datentransfers."

Die Quantenmechanik schützt einen Schlüssel vor Spionen

In der Quantenkryptografie wird zwischen zwei Parteien ein geheimer Schlüssel ausgetauscht, der für die Verschlüsselung von Botschaften verwendet werden kann. Dieses Verfahren ist anders als etablierte Verschlüsselungsverfahren, die mit teilweise öffentlichen Schlüsseln arbeiten, solange nicht zu knacken, wie der Schlüssel nicht in falsche Hände gerät.

Um das sicherzustellen schicken die beiden Parteien einander Schlüssel in Form von Quantenzuständen in Laserblitzen. Die Gesetze der Quantenmechanik schützen einen Schlüssel dabei vor Spionen, weil jeder Mitlauschversuch unvermeidlich Spuren in den Signalen hinterlässt, die Sender und Empfänger sofort erkennen. Das Lesen von Quanteninformation entspricht nämlich einer Messung am Lichtpuls, was unweigerlich den Quantenzustand des Lichts verändert.

Im Labor und über kurze Strecken auch unter Bedingungen der Telekommunikationstechnik funktioniert die Verteilung von Quantenschlüsseln (englisch: quantum key distribution) etwa über Glasfasern schon ziemlich gut, über weite Strecken müssten die schwachen und empfindlichen Quantensignale jedoch aufgefrischt werden, was aus ähnlichen Gründen schwierig ist, aus denen die Laserpulse sich nicht unbemerkt abfangen lassen. Christoph Marquardt und seine Kollegen setzen daher auf die Übertragung von Quantenzuständen durch die Atmosphäre, und zwar zwischen der Erde und Satelliten, um ein weltumspannendes Kommunikationsnetz aufzubauen, das durch die Quantenkryptografie geschützt ist.

Das Licht von Alphasat I-XL im Quantenbereich vermessen

In ihrer aktuellen Arbeit zeigten die Forscher nun, dass man hierfür zu einem großen Teil schon auf bestehende Technologie aufbauen kann. Mit einem Messgerät auf der kanarischen Insel Teneriffa detektierten sie nämlich die Quanteneigenschaften von Laserblitzen, die der Kommunikationssatellit Alphasat I-XL zur Erde schickte. Der Satellit umkreist die Erde auf einer geostationären Bahn, scheint am Himmel also stillzustehen. Der 2013 gestartete Satellit besitzt an Bord eine Laser-Kommunikationseinrichtung der Europäischen Weltraumorganisation ESA. Die Technik hat das in Backnang ansässige Unternehmen Tesat-Spacecom in Zusammenarbeit mit dem Deutschen Zentrum für Luft- und Raumfahrt im Rahmen des europäischen Copernicus-Projekts zur Erdbeobachtung entwickelt, das vom Bundesministerium für Wirtschaft und Energie gefördert wurde.

Alphasat I-XL war zwar nicht für die Quantenkommunikation vorgesehen. „Wir haben aber irgendwann gesehen, dass die Datenübertragung des Satelliten nach demselben Prinzip funktioniert wie diejenige bei unseren Laborversuchen", erklärt Marquardt, „nämlich durch die Modulation von Amplitude und Phase der Lichtwellen.“ Die Amplitude ist ein Maß für die Intensität der Lichtwellen, anhand der Phase lässt sich die Verschiebung zweier Wellen gegeneinander bestimmen.

Nach 38000 Kilometern ist der Laserstrahl 800 Meter breit

Bei der herkömmlichen Datenübertragung wird die Modulation etwa der Amplitude besonders groß gemacht. Das erleichtert das Auslesen im Empfänger und garantiert ein deutliches Signal. Marquardt und Kollegen strebten aber genau das Gegenteil an: Um mit den Laserpulsen in den Quantenbereich zu gelangen, müssen sie die Amplitude stark verringern.

Das Signal, das deshalb bereits extrem schwach ist, wird bei Übertragung zur Erde noch einmal stark abgeschwächt. Der größte Verlust tritt durch die Aufweitung des Laserstrahls auf. Nach 38 000 Kilometern besitzt er am Boden einen Durchmesser von 800 Metern, während der Durchmesser des Spiegels in der Empfangsstation gerade einmal 27 Zentimeter beträgt. In dem derart aufgeweiteten Strahl fänden also locker noch weitere Empfangsspiegel Platz, mit denen ungebetene Zuhörer die Kommunikation anzapfen könnten. Das berücksichtigt das Procedere der Quantenkryptographie jedoch. Die Technik macht sich dabei, vereinfacht gesagt, zunutze, dass ein Photon – um nichts anderes handelt es sich bei den Signalen der Quantenkommunikation – nur einmal vollständig gemessen werden kann: entweder mit dem Messapparat des rechtmäßigen Empfängers oder dem Abhörgerät des Spions. Wo ein Photon innerhalb des Strahldurchmessers registriert wird, bleibt dabei allerdings dem Zufall überlassen.

Trotz des stark abgeschwächten Signals war das Anfang 2016 ausgeführte Experiment erfolgreich. Denn die Wissenschaftler stellten fest, dass die Eigenschaften der am Boden empfangenen Signale der Grenze des Quantenrauschens sehr nahe kamen. Mit dem Rauschen von Laserlicht meinen Physiker Schwankungen im Photonenstrom. Ein Teil dieser Unregelmäßigkeit wird durch Unzulänglichkeiten der Sende- und Empfangsgeräte oder durch Turbulenzen in der Atmosphäre hervorgerufen, lässt sich also im Prinzip vermeiden. Ein anderer Teil der Schwankungen ergibt sich aus den Gesetzen der Quantenphysik, genauer der Unschärferelation, derzufolge sich die Amplitude und Phase des Lichts gleichzeitig nicht beliebig genau festlegen lassen.

Die Quantenkryptografie kann etablierte Satellitentechnik nutzen

Da die Übertragung mithilfe des Tesat-Systems schon die Quanteneigenschaften der Lichtblitze messbar macht, lässt sich auf Basis dieser Technik eine satellitengestützte Quantenkryptografie entwickeln. „Das hat uns vor allem beeindruckt, weil der Satellit ja gar nicht für die Quantenkommunikation vorgesehen war", erklärt Marquardt.

Zusammen mit den Kollegen von Tesat und anderen Partnern wollen die Erlanger Physiker nun einen neuen Satelliten entwickeln, der speziell auf die Bedürfnisse der Quantenkryptografie zugeschnitten ist. Weil sie dabei in großen Teilen auf der bereits bewährten Technik aufbauen können, dürfte die Entwicklung wesentlich weniger Zeit in Anspruch nehmen als eine völlig neue Entwicklung. So müssen sie vor allem einen für die Quantenkommunikation ausgelegten Bordcomputer konzipieren und den quantenmechanischen Zufallsgenerator, der den kryptografischen Schlüssel liefert, weltraumtauglich machen.

Damit ist die Quantenkryptografie, die für Physiker anfangs eine exotische Spielwiese war, inzwischen recht nah an der praktischen Anwendung. So ist das Wettrennen um das erste funktionierende abhörsichere System ist in vollem Gange. Staaten wie Japan, Kanada, die USA und vor allem China stecken zum Teil viel Geld in die Forschung. „Die Bedingungen für unsere Forschung haben sich komplett verändert", erklärt Marquardt. „Ursprünglich haben wir versucht, der Industrie ein solches Verfahren schmackhaft zu machen, heute kommt sie von sich aus auf uns zu und fragt nach praktikablen Lösungen." Die könnte es in den kommenden fünf bis zehn Jahren geben.


Ansprechpartner
Dr. Christoph Marquardt
Max-Planck-Institut für die Physik des Lichts, Erlangen

Telefon: +49 9131 7133-116
E-Mail: Christoph.Marquardt@mpl.mpg.de

Prof. Dr. Gerd Leuchs
Max-Planck-Institut für die Physik des Lichts, Erlangen

Telefon: +49 9131 7133-100

Fax: +49 9131 7133-109

E-Mail: gerd.leuchs@mpl.mpg.de

Originalpublikation
Kevin Günthner, Imran Khan, Dominique Elser, Birgit Stiller, Ömer Bayraktar, Christian R. Müller, Karen Saucke, Daniel Tröndle, Frank Heine, Stefan Seel, Peter Greulich, Herwig Zech, Björn Gütlich, Sabine Philipp-May, Christoph Marquardt und Gerd Leuchs

Quantum-limited measurements of optical signals from a geostationary satellite

Optica, 15. Juni 2017; https://doi.org/10.1364/OPTICA.4.000611

Dr. Christoph Marquardt | Max-Planck-Institut für die Physik des Lichts, Erlangen
Weitere Informationen:
https://www.mpg.de/11382103/quantenkryptografie-satellit-alphasat-i-xl

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Maschinelles Lernen im Quantenlabor
19.01.2018 | Universität Innsbruck

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie