Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenkommunikation in freier Luft nimmt Fahrt auf

24.07.2017

Mit einer Quantenverbindung quer über die Dächer von Wien konnten Forscher/innen der Österreichischen Akademie der Wissenschaften erstmals Quanteninformation mit mehreren Eigenschaften durch die Atmosphäre hindurch übertragen. Das berichten sie nun im Fachjournal „Nature Communications“. Das Experiment könnte neue Geschwindigkeitsrekorde in der Quantenkommunikation möglich machen.

Quantenphysikalisch verschränkte Teilchen zeichnen sich dadurch aus, dass sie eine Vielzahl von Eigenschaften miteinander teilen und jede Messung an einem der Teilchen augenblicklich den Zustand des anderen Teilchens festlegt.


Sendestation mit rotem Justagelaser im Hedy Lamarr Teleskop am Dach des Instituts für Quantenoptik und Quanteninformation der ÖAW mit Blick in Richtung der Empfangsstation im Norden Wiens.

Österreichische Akademie der Wissenschaften


Quantenoptischer Aufbau zur Erzeugung verschränkter Photonen am Institut für Quantenoptik und Quanteninformation der ÖAW.

Österreichische Akademie der Wissenschaften

Während sich in der Vergangenheit Experimente zur Verschränkung zumeist auf eine dieser Eigenschaften konzentrierten, hätte die Ausweitung der Untersuchung auf gleich mehrere Eigenschaften große Vorteile für die Quantenkommunikation: Geschwindigkeit und Effizienz der Informationsübertragung könnten dadurch gesteigert werden.

„Hyperentanglement“ zum ersten Mal außerhalb des Labors getestet

Dieser Ansatz wird daher in der Quantenforschung seit Längerem intensiv verfolgt. Er hat jedoch eine Schwachstelle: Das sogenannte „Hyperentanglement“ – die Verschränkung von Teilchen über mehrere Eigenschaften – konnte bisher nur in Laborexperimenten nachgewiesen werden. Für Verbindungen über größere Distanzen hinweg, ist eine Übertragung durch die freie Luft wesentlich. Diese könnte aber durch Turbulenzen in der Atmosphäre verfälscht werden, so die Befürchtung in der Quantenphysik.

Eine Befürchtung, die Forscher/innen des Wiener Instituts für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften (ÖAW) rund um Forschungsgruppenleiter Rupert Ursin nun entkräften konnten. Wie sie in einer neuen Publikation im Fachjournal „Nature Communications“ berichten, gelang es ihnen erstmals, Quanteninformation anhand zweier Eigenschaften von verschränkten Lichtteilchen – der Schwingungsrichtung und dem Erzeugungszeitpunkt – durch den Luftraum im Wiener Stadtgebiet zu übertragen und zu messen.

Künftig schnellere Quantenkommunikation möglich

Mithilfe des Hedy Lamarr Teleskops am Dach des ÖAW-Instituts in der Wiener Boltzmanngasse sowie einer Empfängerstation an der Universität für Bodenkultur Wien wurden diese beiden Eigenschaften von verschränkten Lichtteilchen trotz atmosphärischer Turbulenzen am jeweils anderen Ende der Quantenverbindung erfolgreich nachgewiesen.

„Experimente mit der Zeitverschränkung sind bisher nur in Glasfasern gelungen. Wir konnten nun, zusätzlich zu der vielfach untersuchten Schwingungsrichtung der Teilchen, auch den Zeitpunkt der Erzeugung der Teilchen als weitere Eigenschaft der Teilchen erstmals in Freiluft übertragen“, bestätigen die Erstautoren Fabian Steinlechner und Sebastian Ecker das Gelingen des Experiments.

Was diese erstmalige Untersuchung des „Hyperentanglement“ in freier Atmosphäre für die weitere Entwicklung der Quantenkommunikation bedeutet, erklärt ÖAW-Forscher Rupert Ursin: „Hyperentanglement erlaubt es Lichtteilchen, Information die in unterschiedlichen Eigenschaften kodiert ist, gleichzeitig auszutauschen. Das könnte die Geschwindigkeit der Datenübertragung in der Quantenkommunikation erheblich beschleunigen.“

Denn durch die Verschränkung gleich mehrerer Eigenschaften lässt sich die Anzahl der für die Übertragung von Information benötigten Teilchen drastisch reduzieren. Das macht die Quantenverbindungen schneller und effizienter – und damit etwa auch künftige Experimente zur Quantenkommunikation über Satelliten noch vielversprechender.

Publikation:

"Distribution of high-dimensional entanglement via an intra-city free-space link", Fabian Steinlechner, Sebastian Ecker, Matthias Fink, Bo Liu, Jessica Bavaresco, Marcus Huber, Thomas Scheidl, Rupert Ursin. Nature Communications, 2017.
DOI:10.1038/NCOMMS15971

Wissenschaftlicher Kontakt:

Fabian Steinlechner
Institut für Quantenoptik und Quanteninformation Wien
Österreichische Akademie der Wissenschaften
Boltzmanngasse 3, 1090 Wien
T +43 1 4277-29558
fabian.steinlechner@oeaw.ac.at

Weitere Informationen:

https://www.oeaw.ac.at/pr

Dipl.-Soz. Sven Hartwig | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungsnachrichten

Veränderungen in der Geschäftsführung von Phoenix Contact

22.09.2017 | Unternehmensmeldung

Tanzende Elektronen verlieren das Rennen

22.09.2017 | Physik Astronomie