Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenirrfahrt im Labor

10.03.2010
Innsbrucker Physiker schicken Atome auf die Wanderschaft

Eine Zufallsbewegung mit bis zu 23 Schritten haben Physiker um Christian Roos und Rainer Blatt vom Institut für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften in einem Quantensystem realisiert. Es ist das erste Mal, dass ein solcher Quantenzufallsprozess mit gefangenen Ionen in diesem Detail demonstriert wurde.

Ein Wanderer muss sich an jeder Wegkreuzung für einen der möglichen Wege entscheiden. Die Summe dieser Entscheidungen führt ihn schließlich an sein Ziel. Hat der Wanderer seine Landkarte verloren, muss er die Entscheidungen zufällig treffen und mehr oder weniger lange nach seinem Ziel suchen. Die Wissenschaft spricht dann von einer Zufallsbewegung. Solchen Bewegungen („random walks“) begegnet man in Mathematik und Physik ständig. So hat etwa der schottische Botaniker Robert Brown 1827 entdeckt, dass Pollenkörner auf Wassertropfen unregelmäßig zuckende Bewegungen machen.

Ursache dafür sind die zufälligen Bewegungen der Wassermoleküle – ein Phänomen, das die Wissenschaft heute Brown’sche Molekularbewegung nennt. Ein anderes Beispiel ist das Galton-Brett, mit dem Schulkindern die Binomialverteilung veranschaulicht wird. Hier werden Kugeln über ein Brett voll Nägeln gerollt. An jedem Nagel muss sich eine Kugel entscheiden, ob sie links oder rechts vom Nagel vorbeirollt.

Atom macht „Quantenspaziergang“
Dieses Prinzip der Zufallsbewegung haben die Innsbrucker Forscher nun in die Quantenwelt übertragen und ein Atom zum „quantum walk“ animiert: „Wir fangen ein einzelnes geladenes Atom in einer elektromagnetischen Ionenfalle und kühlen es in seinen Grundzustand“, erklärt Christian Roos vom Institut für Quantenoptik und Quanteninformation (IQOQI). „Dann bringen wir das Teilchen in eine quantenmechanische Überlagerung aus zwei inneren Zuständen und schicken das Atom auf Wanderschaft.“ Die beiden inneren Zustände entsprechen der Entscheidung des Wanderers, nach links oder nach rechts zu gehen. Anders als der Wanderer muss sich das Atom aber nicht wirklich entscheiden, wohin es gehen will. Denn durch die Überlagerung der beiden Zustände liegen beide Möglichkeiten gleichzeitig vor. „Abhängig vom inneren Zustand bewegen wir das Ion dann nach links und rechts“, erläutert Christian Roos. „ Dabei werden die Bewegungszustände des Ions mit seinen inneren Zuständen verschränkt.“ Nach jedem Schritt verändern die Experimentalphysiker mit einem Radiofrequenzpuls die Überlagerung der inneren Zustände und bewegen – je nach Ergebnis – das Ion erneut nach links und rechts. Bis zu 23 Mal können sie diesen vom Zufall gesteuerten Vorgang wiederholen und so Daten darüber sammeln, wie sich Quantenzufallsprozesse verhalten. Durch die Verwendung eines zweiten Ions haben die Wissenschaftler das Experiment auch noch erweitert: Dann erhält das wandernde Ion eine dritte Möglichkeit, es kann sich dann entscheiden zwischen links gehen, rechts gehen und einfach stehen bleiben.
Phänomene der Natur besser verstehen
Die statistische Auswertung von zahlreichen solchen Durchläufen bestätigt, dass sich Quantenzufallsprozesse anders verhalten als klassische Zufallsbewegungen. Während sich zum Beispiel beim Galton-Brett die Kugeln statistisch nur langsam vom Ausgangspunkt wegbewegen, zeigen Quantenteilchen einen regelrechten Fluchtreflex auf ihren Irrfahrten. Sie entfernen sich statistisch sehr rasch von ihrem Ursprung.

Anwendung finden solche Experimente, die in ähnlicher Weise auch in Bonn, München und Erlangen mit Atomen, Ionen und Photonen durchgeführt worden sind, einerseits bei der Untersuchung von Naturphänomenen. So vermutet die Forschung zum Beispiel, dass der Energietransport in Pflanzen durch solche Quantenzufallsprozesse sehr viel effizienter als auf klassische Weise funktioniert. Andererseits gilt ein solches Quantenzufallsregime auch als mögliches Modell für einen Quantencomputer, auf dem universelle Probleme gelöst werden können. So könnte etwa die Leistungsfähigkeit von Suchalgorithmen durch die gleichzeitige Wahl von allen möglichen Wegen dramatisch gesteigert werden.

Unterstützt wurden die Forscher bei diesem Experiment vom österreichischen Wissenschaftsfonds FWF und der Europäischen Kommission.

Publikation: Realization of a quantum walk with one and two trapped ions. Zähringer F, Kirchmair G, Gerritsma R, Solano E, Blatt R, Roos CF. Phys. Rev. Lett. 104, 100503 (2010) http://dx.doi.org/10.1103/PhysRevLett.104.100503

Bilder unter: http://iqoqi.at/download

Kontakt:
Dr. Christian Roos
Institut für Quantenoptik und Quanteninformation
Österreichische Akademie der Wissenschaften
Otto-Hittmair-Platz 1
A-6020 Innsbruck, Austria
Tel.: +43 512 507-4728
E-Mail: Christian.Roos@uibk.ac.at
Dr. Christian Flatz
Public Relations
Institut für Quantenoptik und Quanteninformation
Österreichische Akademie der Wissenschaften
Otto-Hittmair-Platz 1, 6020 Innsbruck, Austria
Mobil: +43 650 5777122
E-Mail: pr-iqoqi@oeaw.ac.at

Dr. Christian Flatz | IQOQI
Weitere Informationen:
http://www.iqoqi.at
http://www.quantumoptics.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die schnellste lichtgetriebene Stromquelle der Welt
26.09.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Internationales Forscherteam entdeckt kohärenten Lichtverstärkungsprozess in Laser-angeregtem Glas
25.09.2017 | Universität Kassel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie

Eine detaillierte Waldkarte des blauen Planeten

26.09.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index steigt weiter

26.09.2017 | Wirtschaft Finanzen