Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenirrfahrt im Labor

10.03.2010
Innsbrucker Physiker schicken Atome auf die Wanderschaft

Eine Zufallsbewegung mit bis zu 23 Schritten haben Physiker um Christian Roos und Rainer Blatt vom Institut für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften in einem Quantensystem realisiert. Es ist das erste Mal, dass ein solcher Quantenzufallsprozess mit gefangenen Ionen in diesem Detail demonstriert wurde.

Ein Wanderer muss sich an jeder Wegkreuzung für einen der möglichen Wege entscheiden. Die Summe dieser Entscheidungen führt ihn schließlich an sein Ziel. Hat der Wanderer seine Landkarte verloren, muss er die Entscheidungen zufällig treffen und mehr oder weniger lange nach seinem Ziel suchen. Die Wissenschaft spricht dann von einer Zufallsbewegung. Solchen Bewegungen („random walks“) begegnet man in Mathematik und Physik ständig. So hat etwa der schottische Botaniker Robert Brown 1827 entdeckt, dass Pollenkörner auf Wassertropfen unregelmäßig zuckende Bewegungen machen.

Ursache dafür sind die zufälligen Bewegungen der Wassermoleküle – ein Phänomen, das die Wissenschaft heute Brown’sche Molekularbewegung nennt. Ein anderes Beispiel ist das Galton-Brett, mit dem Schulkindern die Binomialverteilung veranschaulicht wird. Hier werden Kugeln über ein Brett voll Nägeln gerollt. An jedem Nagel muss sich eine Kugel entscheiden, ob sie links oder rechts vom Nagel vorbeirollt.

Atom macht „Quantenspaziergang“
Dieses Prinzip der Zufallsbewegung haben die Innsbrucker Forscher nun in die Quantenwelt übertragen und ein Atom zum „quantum walk“ animiert: „Wir fangen ein einzelnes geladenes Atom in einer elektromagnetischen Ionenfalle und kühlen es in seinen Grundzustand“, erklärt Christian Roos vom Institut für Quantenoptik und Quanteninformation (IQOQI). „Dann bringen wir das Teilchen in eine quantenmechanische Überlagerung aus zwei inneren Zuständen und schicken das Atom auf Wanderschaft.“ Die beiden inneren Zustände entsprechen der Entscheidung des Wanderers, nach links oder nach rechts zu gehen. Anders als der Wanderer muss sich das Atom aber nicht wirklich entscheiden, wohin es gehen will. Denn durch die Überlagerung der beiden Zustände liegen beide Möglichkeiten gleichzeitig vor. „Abhängig vom inneren Zustand bewegen wir das Ion dann nach links und rechts“, erläutert Christian Roos. „ Dabei werden die Bewegungszustände des Ions mit seinen inneren Zuständen verschränkt.“ Nach jedem Schritt verändern die Experimentalphysiker mit einem Radiofrequenzpuls die Überlagerung der inneren Zustände und bewegen – je nach Ergebnis – das Ion erneut nach links und rechts. Bis zu 23 Mal können sie diesen vom Zufall gesteuerten Vorgang wiederholen und so Daten darüber sammeln, wie sich Quantenzufallsprozesse verhalten. Durch die Verwendung eines zweiten Ions haben die Wissenschaftler das Experiment auch noch erweitert: Dann erhält das wandernde Ion eine dritte Möglichkeit, es kann sich dann entscheiden zwischen links gehen, rechts gehen und einfach stehen bleiben.
Phänomene der Natur besser verstehen
Die statistische Auswertung von zahlreichen solchen Durchläufen bestätigt, dass sich Quantenzufallsprozesse anders verhalten als klassische Zufallsbewegungen. Während sich zum Beispiel beim Galton-Brett die Kugeln statistisch nur langsam vom Ausgangspunkt wegbewegen, zeigen Quantenteilchen einen regelrechten Fluchtreflex auf ihren Irrfahrten. Sie entfernen sich statistisch sehr rasch von ihrem Ursprung.

Anwendung finden solche Experimente, die in ähnlicher Weise auch in Bonn, München und Erlangen mit Atomen, Ionen und Photonen durchgeführt worden sind, einerseits bei der Untersuchung von Naturphänomenen. So vermutet die Forschung zum Beispiel, dass der Energietransport in Pflanzen durch solche Quantenzufallsprozesse sehr viel effizienter als auf klassische Weise funktioniert. Andererseits gilt ein solches Quantenzufallsregime auch als mögliches Modell für einen Quantencomputer, auf dem universelle Probleme gelöst werden können. So könnte etwa die Leistungsfähigkeit von Suchalgorithmen durch die gleichzeitige Wahl von allen möglichen Wegen dramatisch gesteigert werden.

Unterstützt wurden die Forscher bei diesem Experiment vom österreichischen Wissenschaftsfonds FWF und der Europäischen Kommission.

Publikation: Realization of a quantum walk with one and two trapped ions. Zähringer F, Kirchmair G, Gerritsma R, Solano E, Blatt R, Roos CF. Phys. Rev. Lett. 104, 100503 (2010) http://dx.doi.org/10.1103/PhysRevLett.104.100503

Bilder unter: http://iqoqi.at/download

Kontakt:
Dr. Christian Roos
Institut für Quantenoptik und Quanteninformation
Österreichische Akademie der Wissenschaften
Otto-Hittmair-Platz 1
A-6020 Innsbruck, Austria
Tel.: +43 512 507-4728
E-Mail: Christian.Roos@uibk.ac.at
Dr. Christian Flatz
Public Relations
Institut für Quantenoptik und Quanteninformation
Österreichische Akademie der Wissenschaften
Otto-Hittmair-Platz 1, 6020 Innsbruck, Austria
Mobil: +43 650 5777122
E-Mail: pr-iqoqi@oeaw.ac.at

Dr. Christian Flatz | IQOQI
Weitere Informationen:
http://www.iqoqi.at
http://www.quantumoptics.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

nachricht Einblicke ins Atom
23.01.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie