Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quanteninformationsverarbeitung: Physik - Gemeinsam stärker in der Quantenwelt

15.10.2013
LMU-Wissenschaftler haben einen bisher unbekannten Effekt entdeckt, der einen Störfaktor bei der Nutzung von Quanteneffekten ausbremsen kann – dies könnte besonders die Quanteninformationsverarbeitung entscheidend voranbringen.

Wie die Welt und das Universum im Großen funktionieren, wird durch die Gesetze der klassischen Physik beschrieben. Dabei sind der Zustand eines Systems und damit dessen Zukunft eindeutig durch die Orte und Geschwindigkeiten der einzelnen Teilchen bestimmt.

Auf mikroskopischer Ebene, wo sich die Dynamik auf sehr kleinen Energieskalen abspielt – etwa wenn man Atome oder die Elektronen in einem Festkörper betrachtet – öffnen sich neue Dimensionen: Hier kommen die Gesetze der Quantenphysik zum Tragen. Das bedeutet, dass sich verschiedene klassische Zustände überlagern und Ort und Geschwindigkeit eines Teilchens nur mit Hilfe von Wahrscheinlichkeiten beschrieben werden können.

„Damit steht dem System eine viel größere Menge von möglichen Zuständen zur Verfügung. Es ist wesentlich komplexer und schwieriger zu beschreiben, bietet aber auch mehr Möglichkeiten für technische Anwendungen“, sagt der LMU-Physiker Dr. Thomas Barthel. Eine mögliche Anwendung, in die viele Hoffnungen gesetzt werden, sind etwa Quantencomputer: Die Miniaturisierung unserer normalen Computer stößt an ihre Grenzen, weil die Leiterbahnen so eng und klein werden, dass Quanteneffekte relevant werden. Mit Quantencomputern versucht man einen Paradigmenwechsel einzuleiten, bei dem Quanteneffekte nicht mehr limitierende Störungen darstellen, sondern gezielt ausgenutzt werden, um bisher unerreichte Rechnerleistungen zu erzielen.

Allerdings gibt es bei der Nutzung von Quanteneffekten eine Schwierigkeit: Wenn ein quantenmechanisches System nicht komplett abgeschirmt ist, sondern in Wechselwirkung mit seiner Umwelt tritt, werden seine quantenmechanischen Eigenschaften zerstört. In dem Moment, in dem im Labor ein Quantensystem - etwa ein Atom – gemessen wird, entscheidet sich das System für einen Zustand, sodass die Überlagerung irreversibel verschwindet. Bei einer Kopplung des Quantensystems an seine Umgebung passiert dies ganz ähnlich. Die Umwelt macht eine Art Messung und lässt die Quanteninformation zerfallen. „Dann folgt unser System den Gesetzen der normalen – langweiligen – klassischen Mechanik“, sagt Barthel.

Vielfalt verschwindet in Vielteilchensystemen langsamer

Dieses Phänomen wird Dekohärenz genannt und ist der Feind jedes Experimentators, der die quantenmechanischen Eigenschaften eines Systems untersuchen oder für technische Zwecke ausnutzen möchte. Typischerweise erfolgt der Zerfall der quantenmechanischen Eigenschaften exponentiell mit der Zeit. In ihrer neuen Studie haben Barthel und sein Kollege Dr. Zi Cai nun untersucht, was passiert, wenn nicht die typischen einfachen Quantensysteme (z.B. ein einzelnes Elektron oder Ion) untersucht werden, sondern sogenannte Vielteilchensysteme mit sehr großer Teilchenzahl. Dazu gehören etwa Elektronen in einem Festkörper. „Dabei haben wir entdeckt, dass sich das Zerfallsgesetz der Quanteninformation qualitativ ändern kann“, erklärt Barthel: Besteht das Quantensystem aus sehr vielen Teilchen, die untereinander wechselwirken, kann die Zerfallszeit gegen unendlich gehen. In diesem Fall folgt der Zerfall einem Potenzgesetz – und ist damit sehr viel langsamer als in einfachen Systemen. Indem die Teilchen zusammenarbeiten, können sie also den zerstörerischen Einfluss der Umwelt minimieren.

Damit haben die Wissenschaftler einen bisher unbekannten fundamentalen Effekt entdeckt, der für zukünftige Experimente und technische Anwendungen von großer Bedeutung ist. „Mit unserer Studie liefern wir allgemein das Handwerkszeug, um die Dekohärenz in Quantenvielteilchensystemen tunen zu können – dies ist insbesondere für das Feld der Quanteninformationsverarbeitung ein wichtiger Fortschritt“, betont Barthel. Unter anderem könnte man den neu entdeckten Effekt bei der Realisierung von Quantencomputern und bei der Simulation von Quantensystemen mithilfe anderer gut kontrollierbarer Quantensysteme
ausnutzen.
(Physical Review Letters 2013) göd
Publikation:
Algebraic versus exponential decoherence in dissipative many-particle systems
Zi Cai and Thomas Barthel
Phys. Rev. Lett. 111, 150403 (2013).
Doi: 10.1103/PhysRevLett.111.150403
Kontakt:
Dr. Thomas Barthel
Fakultät für Physik
Phone: +49 (0)89 2180-6417
E-Mail: t.barthel@physik.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor
23.02.2017 | Universität Bayreuth

nachricht Kühler Zwerg und die sieben Planeten
23.02.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie