Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quanteninformationsverarbeitung: Physik - Gemeinsam stärker in der Quantenwelt

15.10.2013
LMU-Wissenschaftler haben einen bisher unbekannten Effekt entdeckt, der einen Störfaktor bei der Nutzung von Quanteneffekten ausbremsen kann – dies könnte besonders die Quanteninformationsverarbeitung entscheidend voranbringen.

Wie die Welt und das Universum im Großen funktionieren, wird durch die Gesetze der klassischen Physik beschrieben. Dabei sind der Zustand eines Systems und damit dessen Zukunft eindeutig durch die Orte und Geschwindigkeiten der einzelnen Teilchen bestimmt.

Auf mikroskopischer Ebene, wo sich die Dynamik auf sehr kleinen Energieskalen abspielt – etwa wenn man Atome oder die Elektronen in einem Festkörper betrachtet – öffnen sich neue Dimensionen: Hier kommen die Gesetze der Quantenphysik zum Tragen. Das bedeutet, dass sich verschiedene klassische Zustände überlagern und Ort und Geschwindigkeit eines Teilchens nur mit Hilfe von Wahrscheinlichkeiten beschrieben werden können.

„Damit steht dem System eine viel größere Menge von möglichen Zuständen zur Verfügung. Es ist wesentlich komplexer und schwieriger zu beschreiben, bietet aber auch mehr Möglichkeiten für technische Anwendungen“, sagt der LMU-Physiker Dr. Thomas Barthel. Eine mögliche Anwendung, in die viele Hoffnungen gesetzt werden, sind etwa Quantencomputer: Die Miniaturisierung unserer normalen Computer stößt an ihre Grenzen, weil die Leiterbahnen so eng und klein werden, dass Quanteneffekte relevant werden. Mit Quantencomputern versucht man einen Paradigmenwechsel einzuleiten, bei dem Quanteneffekte nicht mehr limitierende Störungen darstellen, sondern gezielt ausgenutzt werden, um bisher unerreichte Rechnerleistungen zu erzielen.

Allerdings gibt es bei der Nutzung von Quanteneffekten eine Schwierigkeit: Wenn ein quantenmechanisches System nicht komplett abgeschirmt ist, sondern in Wechselwirkung mit seiner Umwelt tritt, werden seine quantenmechanischen Eigenschaften zerstört. In dem Moment, in dem im Labor ein Quantensystem - etwa ein Atom – gemessen wird, entscheidet sich das System für einen Zustand, sodass die Überlagerung irreversibel verschwindet. Bei einer Kopplung des Quantensystems an seine Umgebung passiert dies ganz ähnlich. Die Umwelt macht eine Art Messung und lässt die Quanteninformation zerfallen. „Dann folgt unser System den Gesetzen der normalen – langweiligen – klassischen Mechanik“, sagt Barthel.

Vielfalt verschwindet in Vielteilchensystemen langsamer

Dieses Phänomen wird Dekohärenz genannt und ist der Feind jedes Experimentators, der die quantenmechanischen Eigenschaften eines Systems untersuchen oder für technische Zwecke ausnutzen möchte. Typischerweise erfolgt der Zerfall der quantenmechanischen Eigenschaften exponentiell mit der Zeit. In ihrer neuen Studie haben Barthel und sein Kollege Dr. Zi Cai nun untersucht, was passiert, wenn nicht die typischen einfachen Quantensysteme (z.B. ein einzelnes Elektron oder Ion) untersucht werden, sondern sogenannte Vielteilchensysteme mit sehr großer Teilchenzahl. Dazu gehören etwa Elektronen in einem Festkörper. „Dabei haben wir entdeckt, dass sich das Zerfallsgesetz der Quanteninformation qualitativ ändern kann“, erklärt Barthel: Besteht das Quantensystem aus sehr vielen Teilchen, die untereinander wechselwirken, kann die Zerfallszeit gegen unendlich gehen. In diesem Fall folgt der Zerfall einem Potenzgesetz – und ist damit sehr viel langsamer als in einfachen Systemen. Indem die Teilchen zusammenarbeiten, können sie also den zerstörerischen Einfluss der Umwelt minimieren.

Damit haben die Wissenschaftler einen bisher unbekannten fundamentalen Effekt entdeckt, der für zukünftige Experimente und technische Anwendungen von großer Bedeutung ist. „Mit unserer Studie liefern wir allgemein das Handwerkszeug, um die Dekohärenz in Quantenvielteilchensystemen tunen zu können – dies ist insbesondere für das Feld der Quanteninformationsverarbeitung ein wichtiger Fortschritt“, betont Barthel. Unter anderem könnte man den neu entdeckten Effekt bei der Realisierung von Quantencomputern und bei der Simulation von Quantensystemen mithilfe anderer gut kontrollierbarer Quantensysteme
ausnutzen.
(Physical Review Letters 2013) göd
Publikation:
Algebraic versus exponential decoherence in dissipative many-particle systems
Zi Cai and Thomas Barthel
Phys. Rev. Lett. 111, 150403 (2013).
Doi: 10.1103/PhysRevLett.111.150403
Kontakt:
Dr. Thomas Barthel
Fakultät für Physik
Phone: +49 (0)89 2180-6417
E-Mail: t.barthel@physik.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie