Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantengravitation im Spiegel sehen?

19.03.2012
Auf der Planck-Skala von extrem großen Energien und sehr kleinen Entfernungen wird die Verschmelzung der Quantenphysik mit Einsteins Theorie der Gravitation erwartet.
Diese Skala ist jedoch so weit von experimentellen Möglichkeiten entfernt, dass es als unmöglich gilt, die Quantengravitation zu testen. Eine Kollaboration zwischen Èaslav Brukner und Markus Aspelmeyer, beide Quantenphysik-Physiker an der Universität Wien, sowie Myungshik Kim vom Imperial College London, hat jetzt ein Experiment mit Spiegeln auf der Skala der Planck-Masse vorgeschlagen, mit dem man einige Quantengravitationstheorien im Labor überprüfen könnte. Die Resultate erscheinen aktuell in "Nature Physics".

Eine seit langem ungelöste Aufgabe
Eine der wichtigsten und spannendsten Aufgaben der modernen Physik ist die Suche nach einer Theorie, die die Quantenmechanik mit Einsteins allgemeiner Relativitätstheorie vereinigt. Die Quantenmechanik beschreibt die Physik, die sich auf den Größenordnungen von einzelnen Teilchen, Atomen und Molekülen zeigt. Andererseits zeigt sich Einsteins allgemeine Relativitätstheorie vor allem bei großen Massen. Eine vereinheitlichte Theorie der Quantengravitation erwartet man erst auf der so genannten Planck-Skala von extrem großen Energien und sehr kleinen Entfernungen.

Darstellung eines Laserpulses, der mögliche Quantengravitationseffekte im Spiegel testet. oto: Jonas Schmöle, VCQ, Universität Wien)

Die Planck-Länge ist gerade mal 1,6 x 10-35 Meter groß: Würde man diese Länge als 1 Meter definieren, so wäre ein Atom so groß wie das gesamte sichtbare Universum. Und auch die Planck-Energie ist so groß, dass selbst der Large Hadron Collider des CERN nur einen winzigen Bruchteil dieser Energie erreicht.

Um nahe an die Planck-Energie zu kommen, müsste ein Teilchenbeschleuniger eine astronomische Größe haben. Die Planck-Skala kann auch durch die Planck-Masse beschrieben werden: Ein Staubkorn hat etwa diese Masse, was im Vergleich zu Atomen extrem schwer ist, sodass Quanteneffekte für solche Massen als nicht beobachtbar gelten. Die Planck-Skala ist somit so weit von Experimenten entfernt, dass es als nahezu unmöglich gilt, Theorien der Quantengravitation zu testen. Trotzdem haben Physiker jetzt einen Weg gefunden, Vorhersagen mancher Theorien der Quantengravitation im Experiment mit massiven Spiegeln zu testen.

Die Reihenfolge macht den Unterschied

Die Quantenmechanik verbietet es, die Position und die Geschwindigkeit eines Teilchens gleichzeitig zu kennen. Trotzdem sind aufeinanderfolgende Messungen vom Ort und vom Impuls möglich: Entweder man misst zuerst den Ort und dann den Impuls oder umgekehrt. In der Quantenphysik erhält man unterschiedliche Resultate, je nachdem welche Reihenfolge man wählt. Viele Theorien zur Quantengravitation besagen jedoch, dass sich dieser Unterschied abhängig von der Masse ändert, denn die Planck-Länge begrenzt die Messgenauigkeit vom Ort. Die Forscher in Wien und in London haben jetzt gezeigt, dass trotz dieser nur sehr kleinen Änderung ein messbarer Effekt bei sehr massiven Quantensystemen auftreten kann.

Neue Theorien mit beweglichen Spiegeln testen

Die Idee der Forscher besteht darin, diese Differenz zwischen den beiden Messreihenfolgen in neuen Quantensystemen zu testen: Mit neuen Techniken und Quantentechnologien ist es seit kurzem möglich, massive, bewegliche Spiegel in Quantenzustände zu bringen und diese mit sehr hoher Präzision auszumessen. Die Forscher schlagen vor, vier Wechselwirkungen zwischen einem Laserpuls und einem beweglichen Spiegel zu nutzen, um genau diesen Unterschied zwischen der Reihenfolge der Messungen des Orts und des Impulses zu untersuchen. Indem man die Wechselwirkungen ganz genau zeitlich koordiniert und präzise implementiert, ist es möglich, diesen Effekt auf den Laserpuls zu übertragen und ihn dann mit quantenoptischen Methoden auszulesen. "Jegliche Abweichung von dem erwarteten quantenmechanischen Ergebnis wäre sehr spannend", sagt Igor Pikovski, Hauptautor der Forschungsarbeit, "und selbst wenn man keine Abweichung misst, erhält man eine Einschränkung für mögliche neue Theorien". In der Tat machen einige der Theorien zur Quantengravitation von der Quantenmechanik abweichende Vorhersagen für das Ergebnis des Experiments. Die Forscher zeigen mit ihrer Arbeit, dass es möglich sein kann, einige Vorhersagen der immer noch unerforschten Quantengravitation direkt auf dem Labortisch zu testen.

Publikation in "Nature Physics":
Probing Planck-scale physics with quantum optics: I. Pikovski, M. R. Vanner, M. Aspelmeyer, M. S. Kim and C. Brukner. Nature Physics (2012) DOI: 10.1038/NPHYS2262

Wissenschaftlicher Kontakt
Dipl.-Phys. Igor Pikovski
Quantum Optics, Quantum Nanophysics, Quantum Information
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-725 83
M +43-699-172 071 81
igor.pikovski@univie.ac.at

Rückfragehinweis
Petra Beckmannova
(Büro Prof. Èaslav Brukner)
Quantum Optics, Quantum Nanophysics, Quantum Information
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-512 05
arndt-office@univie.ac.at

Veronika Schallhart | Universität Wien
Weitere Informationen:
http://www.quantum.at
http://www.quantumfoundations.weebly.com

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Rätselhaftes IceCube-Ereignis könnte von Tau-Neutrino stammen
19.06.2018 | Johannes Gutenberg-Universität Mainz

nachricht Ein neues Experiment zum Verständnis der Dunklen Materie
14.06.2018 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 in Shanghai

Die AchemAsia geht in ihr viertes Jahrzehnt und bricht auf zu neuen Ufern: Das International Expo and Innovation Forum for Sustainable Chemical Production findet vom 21. bis 23. Mai 2019 in Shanghai, China statt. Gleichzeitig erhält die Veranstaltung ein aktuelles Profil: Die elfte Ausgabe fokussiert auf Themen, die für Chinas Prozessindustrie besonders relevant sind, und legt den Schwerpunkt auf Nachhaltigkeit und Innovation.

1989 wurde die AchemAsia als Spin-Off der ACHEMA ins Leben gerufen, um die Bedürfnisse der sich damals noch entwickelnden Iindustrie in China zu erfüllen. Seit...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: Li-Fi erstmals für das industrielle Internet der Dinge getestet

Mit einer Abschlusspräsentation im BMW Werk München wurde das BMBF-geförderte Projekt OWICELLS erfolgreich abgeschlossen. Dabei wurde eine Li-Fi Kommunikation zu einem mobilen Roboter in einer 5x5m² Fertigungszelle demonstriert, der produktionsübliche Vorgänge durchführt (Teile schweißen, umlegen und prüfen). Die robuste, optische Drahtlosübertragung beruht auf räumlicher Diversität, d.h. Daten werden von mehreren LEDs und mehreren Photodioden gleichzeitig gesendet und empfangen. Das System kann Daten mit mehr als 100 Mbit/s und fünf Millisekunden Latenz übertragen.

Moderne Produktionstechniken in der Automobilindustrie müssen flexibler werden, um sich an individuelle Kundenwünsche anpassen zu können. Forscher untersuchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

Simulierter Eingriff am virtuellen Herzen

18.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Rätselhaftes IceCube-Ereignis könnte von Tau-Neutrino stammen

19.06.2018 | Physik Astronomie

Automatisierung und Produktionstechnik – Wandlungsfähig – Präzise – Digital

19.06.2018 | Messenachrichten

Überdosis Calcium

19.06.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics