Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenexperiment für thermoelektrische Materialien

25.10.2013
Die direkte Umwandlung von Wärme zu Strom könnte zu einer wichtigen Quelle erneuerbarer Energie werden. Dazu müssten neue, hocheffiziente sogenannte thermoelektrische Materialen entwickelt werden, wobei ein neuartiger Ansatz helfen könnte: In einem Experiment mit kalten, von Lasern eingefangenen Atomen stellt eine internationale Gruppe mit Physikern der ETH Zürich das Verhalten solcher Materialien präzise nach.

Die im 19. Jahrhundert entdeckten thermoelektrischen Materialien verfügen über die bemerkenswerte Eigenschaft, dass sie bei Erwärmung einen schwachen elektrischen Strom erzeugen. Diesen Strom auf ein Mass zu verstärken, das für moderne Technologien benötigt wird, stellte die Wissenschaftler in den vergangenen Jahrzehnten trotz grosser theoretischer und experimenteller Bemühungen vor eine beachtliche Herausforderung. Nun könnte ein neuartiger Ansatz für einen wesentlichen Fortschritt sorgen. An der ETH Zürich hat das Quantenoptik-Team um Tilman Esslinger ein Modell geschaffen, das für das bessere Verständnis der grundlegenden Phänomene entscheidend ist – den thermoelektrischen Material-Simulator

Es geschah beinahe zufällig: In Zürich hatten Teammitglied Jean-Philippe Brantut und seine Kollegen gerade einen neuen Versuch aufgebaut, als Gastprofessor Antoine Georges vom Collège de France und der Universität Genf einen Blick auf das Labor warf und begeistert war. «Wir glaubten nicht wirklich daran, dass unser Experiment effiziente Thermoelektrizität erzeugen könnte», erinnert sich Jean-Philippe Brantut, «aber dann sagte er uns, dass unser Aufbau extrem interessant sei, etwas, wonach er und seine Kollegen Corinna Kollath (Universität Bonn) und Charles Grenier (Ecole Polytechnique – CNRS, Paris) jahrelang gesucht hatten.»

Antoine Georges kam bereits am nächsten Tag mit einem ganzen Haufen Gleichungen wieder, um die Forscher davon zu überzeugen, dass sich ihr Experiment ideal zur Erforschung von Thermoelektrizität eignete. Dies hatte eine fruchtbare Zusammenarbeit von theoretischen Physikern in Paris, Bonn und Genf und Experimentalphysikern in Zürich zur Folge. Die Resultate des internationalen Teams werden nun in der Fachzeitschrift Science vorgestellt.

Von der Wärme zur Elektrizität

Die Erzeugung von Elektrizität aus Wärme beinhaltet in der Regel das Verbrennen eines Brennstoffs, der eine Flüssigkeit erhitzt, die wiederum eine mechanische Turbine antreibt, welche schliesslich elektrischen Strom generiert. Bei thermoelektrischen Materialien erfolgt der ganze Zyklus, der von einem Verbrennungsmotor geleistet wird, von Natur aus. Dieser Effekt ist jedoch schwach, und bei den bislang bekannten Materialien ist die Leistung thermoelektrischer Generatoren viel geringer als jene von Elektrokraftwerken.

Derzeit wird die Technologie hauptsächlich zum Antrieb von Raumsonden wie dem Mars-Rover Curiosity oder für kleine Geräte wie energieautarke Sensoren eingesetzt. Die Fachleute rechnen für die Zukunft jedoch mit einer breiten Palette möglicher Anwendungen. In einem Motor geht viel Wärme verloren. Automobilfirmen testen bereits verschiedene Systeme, um Energie aus den Abgasen zurückzugewinnen, und rechnen mit Treibstoffersparnissen von 3 bis 5 Prozent. Andere Anwendungen könnten mit Körperwärme betriebene Mobiltelefone oder Uhren sein. Weil Wärme bei menschlichen Tätigkeiten gewöhnlich verlorengeht, wäre ein hocheffizientes thermoelektrisches Material eine wichtige Quelle erneuerbarer Energie.

Der thermoelektrische Material-Simulator steht an der ETH in einer Vakuumkammer aus Glas. Darin befindet sich ein Gas aus Lithiumatomen. Per Laser wird das Gas auf sehr niedrige Temperaturen nahe dem absoluten Nullpunkt unter minus 273 Grad Celsius gekühlt. Unter diesen Bedingungen verhalten sich die Atome im Gas wie Elektronen in einem Festkörper. Zur Simulation von Thermoelektrizität werden die Atome mit Laser-strahlen eingefangen. Diese schaffen eine räumlich variierende Struktur, in der sich die Atome so bewegen wie Elektronen in einem Festkörper.

Eine grosse Überraschung

Das Verhalten komplexer Materialien mithilfe von Atomen zu simulieren, die von Lasern eingefangen werden, ist eine wohlerprobte Methode in Zürich. In den vergangenen zehn Jahren erforschte das Quantenoptik-Team der ETH Supraleiter und Magnete und sogar elektronische Bauelemente. Aber Tilman Esslinger, Professor für Quantenoptik, rechnete nicht damit, dass ihr neues Experiment ein derart grosser Erfolg sein könnte. «Mit einfachen Mitteln stellen wir Thermoelektrizität nach, die ebenso leistungsfähig ist wie in natürlichen Materialien», erklärt er. «Das war eine grosse Überraschung.»

Obwohl es sich nach wie vor um Grundlagenforschung handelt, könnte das Experiment die Materialwissenschaften stärker beeinflussen, als das Team anfangs glaubte. «Unser Experiment könnte als eine Art Massstab dienen», so Jean-Philippe Brantut, der seine vom Schweizerischen Nationalfonds finanzierte Forschung weiterführen wird. In den nächsten zwei Jahren wird das Team versuchen, das Ursprungsexperiment weiterzuentwickeln, um komplexere Systeme zu studieren. Doch bereits jetzt wirft die Kaltatom-Simulation ein neues Licht auf die Thermoelektrizität: Ein Vergleich zwischen Theorie und Experiment, der für natürliche Materialien aufgrund ihrer hohen Komplexität oft schwierig ist, kann nun an den Atomen präzise durchgeführt werden. Sogar die Auswirkungen von Fehlern und Störungen am Material wurden mit dem Kaltatom-Simulator erfolgreich erforscht.

Mit diesen neuen Erkenntnissen können die der Thermoelektrizität zugrunde liegenden Prozesse auf kontrollierte Art erforscht werden. Dies könnte künftig der Nachbildung und der Entwicklung von thermoelektrischen Materialien dienen, insbesondere dort, wo Versuche mit natürlichen Materialien noch einer theoretischen Interpretation bedürfen.

Original: J.P. Brantut, C. Grenier, J. Meineke, D. Stadler, S. Krinner, C. Kollath, T. Esslinger und A. Georges: A thermoelectric Heat Engine with Ultra-Cold Atoms, Science, Online-Vorabveröffentlichung 24. Oktober 2013, doi: 10.1126/science.1242308

Claudia Naegeli | ETH Zürich
Weitere Informationen:
http://www.ethz.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten
23.01.2018 | Universität Basel

nachricht Reisetauglicher Laser
22.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks Industrie & Wirtschaft
Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungsnachrichten

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungsnachrichten

CES Innovation Award für kombinierte Blick- und Spracheingabe im Auto

23.01.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics