Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenexperiment für thermoelektrische Materialien

25.10.2013
Die direkte Umwandlung von Wärme zu Strom könnte zu einer wichtigen Quelle erneuerbarer Energie werden. Dazu müssten neue, hocheffiziente sogenannte thermoelektrische Materialen entwickelt werden, wobei ein neuartiger Ansatz helfen könnte: In einem Experiment mit kalten, von Lasern eingefangenen Atomen stellt eine internationale Gruppe mit Physikern der ETH Zürich das Verhalten solcher Materialien präzise nach.

Die im 19. Jahrhundert entdeckten thermoelektrischen Materialien verfügen über die bemerkenswerte Eigenschaft, dass sie bei Erwärmung einen schwachen elektrischen Strom erzeugen. Diesen Strom auf ein Mass zu verstärken, das für moderne Technologien benötigt wird, stellte die Wissenschaftler in den vergangenen Jahrzehnten trotz grosser theoretischer und experimenteller Bemühungen vor eine beachtliche Herausforderung. Nun könnte ein neuartiger Ansatz für einen wesentlichen Fortschritt sorgen. An der ETH Zürich hat das Quantenoptik-Team um Tilman Esslinger ein Modell geschaffen, das für das bessere Verständnis der grundlegenden Phänomene entscheidend ist – den thermoelektrischen Material-Simulator

Es geschah beinahe zufällig: In Zürich hatten Teammitglied Jean-Philippe Brantut und seine Kollegen gerade einen neuen Versuch aufgebaut, als Gastprofessor Antoine Georges vom Collège de France und der Universität Genf einen Blick auf das Labor warf und begeistert war. «Wir glaubten nicht wirklich daran, dass unser Experiment effiziente Thermoelektrizität erzeugen könnte», erinnert sich Jean-Philippe Brantut, «aber dann sagte er uns, dass unser Aufbau extrem interessant sei, etwas, wonach er und seine Kollegen Corinna Kollath (Universität Bonn) und Charles Grenier (Ecole Polytechnique – CNRS, Paris) jahrelang gesucht hatten.»

Antoine Georges kam bereits am nächsten Tag mit einem ganzen Haufen Gleichungen wieder, um die Forscher davon zu überzeugen, dass sich ihr Experiment ideal zur Erforschung von Thermoelektrizität eignete. Dies hatte eine fruchtbare Zusammenarbeit von theoretischen Physikern in Paris, Bonn und Genf und Experimentalphysikern in Zürich zur Folge. Die Resultate des internationalen Teams werden nun in der Fachzeitschrift Science vorgestellt.

Von der Wärme zur Elektrizität

Die Erzeugung von Elektrizität aus Wärme beinhaltet in der Regel das Verbrennen eines Brennstoffs, der eine Flüssigkeit erhitzt, die wiederum eine mechanische Turbine antreibt, welche schliesslich elektrischen Strom generiert. Bei thermoelektrischen Materialien erfolgt der ganze Zyklus, der von einem Verbrennungsmotor geleistet wird, von Natur aus. Dieser Effekt ist jedoch schwach, und bei den bislang bekannten Materialien ist die Leistung thermoelektrischer Generatoren viel geringer als jene von Elektrokraftwerken.

Derzeit wird die Technologie hauptsächlich zum Antrieb von Raumsonden wie dem Mars-Rover Curiosity oder für kleine Geräte wie energieautarke Sensoren eingesetzt. Die Fachleute rechnen für die Zukunft jedoch mit einer breiten Palette möglicher Anwendungen. In einem Motor geht viel Wärme verloren. Automobilfirmen testen bereits verschiedene Systeme, um Energie aus den Abgasen zurückzugewinnen, und rechnen mit Treibstoffersparnissen von 3 bis 5 Prozent. Andere Anwendungen könnten mit Körperwärme betriebene Mobiltelefone oder Uhren sein. Weil Wärme bei menschlichen Tätigkeiten gewöhnlich verlorengeht, wäre ein hocheffizientes thermoelektrisches Material eine wichtige Quelle erneuerbarer Energie.

Der thermoelektrische Material-Simulator steht an der ETH in einer Vakuumkammer aus Glas. Darin befindet sich ein Gas aus Lithiumatomen. Per Laser wird das Gas auf sehr niedrige Temperaturen nahe dem absoluten Nullpunkt unter minus 273 Grad Celsius gekühlt. Unter diesen Bedingungen verhalten sich die Atome im Gas wie Elektronen in einem Festkörper. Zur Simulation von Thermoelektrizität werden die Atome mit Laser-strahlen eingefangen. Diese schaffen eine räumlich variierende Struktur, in der sich die Atome so bewegen wie Elektronen in einem Festkörper.

Eine grosse Überraschung

Das Verhalten komplexer Materialien mithilfe von Atomen zu simulieren, die von Lasern eingefangen werden, ist eine wohlerprobte Methode in Zürich. In den vergangenen zehn Jahren erforschte das Quantenoptik-Team der ETH Supraleiter und Magnete und sogar elektronische Bauelemente. Aber Tilman Esslinger, Professor für Quantenoptik, rechnete nicht damit, dass ihr neues Experiment ein derart grosser Erfolg sein könnte. «Mit einfachen Mitteln stellen wir Thermoelektrizität nach, die ebenso leistungsfähig ist wie in natürlichen Materialien», erklärt er. «Das war eine grosse Überraschung.»

Obwohl es sich nach wie vor um Grundlagenforschung handelt, könnte das Experiment die Materialwissenschaften stärker beeinflussen, als das Team anfangs glaubte. «Unser Experiment könnte als eine Art Massstab dienen», so Jean-Philippe Brantut, der seine vom Schweizerischen Nationalfonds finanzierte Forschung weiterführen wird. In den nächsten zwei Jahren wird das Team versuchen, das Ursprungsexperiment weiterzuentwickeln, um komplexere Systeme zu studieren. Doch bereits jetzt wirft die Kaltatom-Simulation ein neues Licht auf die Thermoelektrizität: Ein Vergleich zwischen Theorie und Experiment, der für natürliche Materialien aufgrund ihrer hohen Komplexität oft schwierig ist, kann nun an den Atomen präzise durchgeführt werden. Sogar die Auswirkungen von Fehlern und Störungen am Material wurden mit dem Kaltatom-Simulator erfolgreich erforscht.

Mit diesen neuen Erkenntnissen können die der Thermoelektrizität zugrunde liegenden Prozesse auf kontrollierte Art erforscht werden. Dies könnte künftig der Nachbildung und der Entwicklung von thermoelektrischen Materialien dienen, insbesondere dort, wo Versuche mit natürlichen Materialien noch einer theoretischen Interpretation bedürfen.

Original: J.P. Brantut, C. Grenier, J. Meineke, D. Stadler, S. Krinner, C. Kollath, T. Esslinger und A. Georges: A thermoelectric Heat Engine with Ultra-Cold Atoms, Science, Online-Vorabveröffentlichung 24. Oktober 2013, doi: 10.1126/science.1242308

Claudia Naegeli | ETH Zürich
Weitere Informationen:
http://www.ethz.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise