Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenemission aus Fehlstellen

20.01.2014
Entfernt man aus einem regelmäßigen Gitter von Silizium- und Kohlenstoffatomen ein einziges Atom, zeigt der Kristall ganz neue Eigenschaften. Physiker der Universität Würzburg sind auf diesem Gebiet führend und haben jetzt einige Erfolge gefeiert.

Den Laser kennt heutzutage so gut wie jeder; von einem Maser hingegen haben wohl nur Spezialisten gehört. Obwohl beide Geräte auf dem gleichen Prinzip beruhen, hat der Laser längst Einzug in die Allerweltstechnik gefunden, während der Maser ein teures Nischenprodukt geblieben ist, das nur selten zum Einsatz kommt.


Nach dem Beschuss mit Neutronen zeigen Siliziumkarbid-Kristalle überraschende Eigenschaften: Sie emittieren Mikrowellen.
Grafik: Hannes Krauß

Das könnte sich in naher Zukunft ändern: Professor Vladimir Dyakonov, Inhaber des Lehrstuhls für Experimentelle Physik VI der Universität Würzburg, und sein Wissenschaftlicher Mitarbeiter Dr. Georgy Astakhov haben einen Weg gefunden, der dem Maser einen ähnlichen Siegeszug eröffnen könnte wie dem Laser. Über die Ergebnisse ihrer Arbeit berichtet die renommierte Fachzeitschrift Nature Physics in ihrer aktuellen Ausgabe.

Maser: Produzent von Mikrowellen

„Heutige Maser arbeiten nur bei extrem tiefen Temperaturen nahe dem absoluten Nullpunkt und benötigen eine aufwendige Kühlung. Für den Einsatz in der Alltagstechnik sind sie deshalb nicht geeignet“, sagt Vladimir Dyakonov. Ein Maser strahlt wie ein Laser eine elektromagnetische Welle aus, die besondere physikalische Eigenschaften besitzt. Während ein Laser jedoch sichtbares Licht emittiert, gehen von einem Maser Mikrowellen aus. Die sind deutlich energieärmer als Laserlicht; ihre Wellenlängen liegen im Bereich von wenigen Millimetern bis zu Metern, wohingegen es beim Laser ein paar hundert Nanometer sind. Trotzdem sind Maser für die Technik von Interesse: Für Kommunikationszwecke lassen sie sich beispielsweise sehr gut nutzen; außerdem reagieren sie äußerst empfindlich auf Mikrowellen und eignen sich deshalb gut als Sensoren und Messapparate.

Ein fehlendes Atom ändert die Eigenschaften

Astakhov und Dyakonov ist jetzt der prinzipielle Nachweis gelungen, dass ein Maser auch bei Zimmertemperatur arbeiten kann. Die beiden Physiker haben dafür auf ein Material zurückgegriffen, dass sich in der Technik längst etabliert hat: ein Kristall aus Silizium- und Kohlenstoffatomen – Siliziumkarbid. „Wir haben Siliziumkristalle mit Neutronen beschossen und auf diese Weise gezielt einzelne Atome aus dem Kristallgitter entfernt“, beschreibt Astakhov die Vorgehensweise im Labor. Eine Fehlstelle im ansonsten regelmäßigen Gitter: Das merken auch die benachbarten Bindungspartner und reagieren darauf in einer Art und Weise, dass der Kristall seine Eigenschaften verändert. In diesem Fall, wenn er mit Licht bestrahlt ist, sandte er Mikrowellen aus – und das eben schon bei Raumtemperatur.

„Das Prinzip funktioniert“: Dieser Nachweis ist den Würzburger Wissenschaftlern mit dem Siliziumkarbidkristall zum weltweit ersten Mal gelungen; mit dieser Entdeckung haben sie es bis in Nature Physics geschafft. Bis allerdings der erste Siliziumkarbid-Maser auf den Markt kommt, müssten noch viele, bislang noch unbeantwortete Fragen geklärt werden; außerdem bedürfe es dafür einer „konsequenten Technologieentwicklung“.

Neues DFG-Forschungsprojekt gestartet

Was allerdings die Suche nach den Antworten auf die ungelösten Fragen betrifft: Da ist Georgy Astakhov auf dem besten Weg. Für die Forschung an den Fehlstellen in Siliziumkarbidkristallen hat ihm die Deutsche Forschungsgemeinschaft vor wenigen Wochen ein neues Projekt genehmigt. Ausgestattet mit rund 300.000 Euro für einen weiteren Mitarbeiter und Material kann Astakhov damit in den kommenden drei Jahren die grundlegenden physikalischen Prozesse in dem Kristall unter die Lupe nehmen.

Dabei geht es allerdings nicht nur um die Entwicklung eines Masers. Interessant ist das modifizierte Siliziumkarbid noch für eine weitere Anwendung – als Halbleiter und Speichermedium in neuartigen Quantencomputern. Ein solcher Computer verarbeitet Informationen in Form von sogenannten Qubits. Basis dafür kann der Spin der Elektronen sein. Das ist – vereinfacht gesagt – deren Drehimpuls. Er kann in verschiedene Richtungen zeigen und deshalb viel mehr Information als ein klassisches Bit enthalten. Auswirkungen, die sich zur Informationsverarbeitung nutzen lassen.

Ein erprobtes Material

Was noch für das Kristall spricht: Siliziumkarbid ist in der technischen Anwendung weit verbreitet. Leuchtdioden, Transistoren, mikroelektromechanische Bauelemente oder Sensoren aus diesem Material sind bereits auf dem Markt. Das Knowhow zur Verarbeitung im großen Stil ist also längst vorhanden.

Room-temperature quantum microwave emitters based on spin defects in silicon carbide. H. Kraus, V. A. Soltamov, D. Riedel, S. Väth, F. Fuchs, A. Sperlich, P. G. Baranov, V. Dyakonov and G. V. Astakhov. Nature Physics, DOI: 10.1038/NPHYS2826

Kontakt

Prof. Dr. Vladimir Dyakonov, T: (0931)31-83111
E-Mail: dyakonov@physik.uni-wuerzburg.de
Dr. Georgy Astakhov, T: (0931) 31-85125
E-Mail: astakhov@physik.uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor
23.02.2017 | Universität Bayreuth

nachricht Kühler Zwerg und die sieben Planeten
23.02.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2017

23.02.2017 | Veranstaltungen

Wie werden wir gesund alt? - Alternsforscher tagen auf interdisziplinärem Symposium in Magdeburg

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Sechs Bundesländer erproben Online-Schultests der Uni Jena

24.02.2017 | Bildung Wissenschaft

Stachellose Bienen lassen Nester von Soldatinnen verteidigen

24.02.2017 | Biowissenschaften Chemie

Ifremer entwickelt autonomes Unterwasserfahrzeug zur Untersuchung der Tiefsee

24.02.2017 | Maschinenbau