Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenemission aus Fehlstellen

20.01.2014
Entfernt man aus einem regelmäßigen Gitter von Silizium- und Kohlenstoffatomen ein einziges Atom, zeigt der Kristall ganz neue Eigenschaften. Physiker der Universität Würzburg sind auf diesem Gebiet führend und haben jetzt einige Erfolge gefeiert.

Den Laser kennt heutzutage so gut wie jeder; von einem Maser hingegen haben wohl nur Spezialisten gehört. Obwohl beide Geräte auf dem gleichen Prinzip beruhen, hat der Laser längst Einzug in die Allerweltstechnik gefunden, während der Maser ein teures Nischenprodukt geblieben ist, das nur selten zum Einsatz kommt.


Nach dem Beschuss mit Neutronen zeigen Siliziumkarbid-Kristalle überraschende Eigenschaften: Sie emittieren Mikrowellen.
Grafik: Hannes Krauß

Das könnte sich in naher Zukunft ändern: Professor Vladimir Dyakonov, Inhaber des Lehrstuhls für Experimentelle Physik VI der Universität Würzburg, und sein Wissenschaftlicher Mitarbeiter Dr. Georgy Astakhov haben einen Weg gefunden, der dem Maser einen ähnlichen Siegeszug eröffnen könnte wie dem Laser. Über die Ergebnisse ihrer Arbeit berichtet die renommierte Fachzeitschrift Nature Physics in ihrer aktuellen Ausgabe.

Maser: Produzent von Mikrowellen

„Heutige Maser arbeiten nur bei extrem tiefen Temperaturen nahe dem absoluten Nullpunkt und benötigen eine aufwendige Kühlung. Für den Einsatz in der Alltagstechnik sind sie deshalb nicht geeignet“, sagt Vladimir Dyakonov. Ein Maser strahlt wie ein Laser eine elektromagnetische Welle aus, die besondere physikalische Eigenschaften besitzt. Während ein Laser jedoch sichtbares Licht emittiert, gehen von einem Maser Mikrowellen aus. Die sind deutlich energieärmer als Laserlicht; ihre Wellenlängen liegen im Bereich von wenigen Millimetern bis zu Metern, wohingegen es beim Laser ein paar hundert Nanometer sind. Trotzdem sind Maser für die Technik von Interesse: Für Kommunikationszwecke lassen sie sich beispielsweise sehr gut nutzen; außerdem reagieren sie äußerst empfindlich auf Mikrowellen und eignen sich deshalb gut als Sensoren und Messapparate.

Ein fehlendes Atom ändert die Eigenschaften

Astakhov und Dyakonov ist jetzt der prinzipielle Nachweis gelungen, dass ein Maser auch bei Zimmertemperatur arbeiten kann. Die beiden Physiker haben dafür auf ein Material zurückgegriffen, dass sich in der Technik längst etabliert hat: ein Kristall aus Silizium- und Kohlenstoffatomen – Siliziumkarbid. „Wir haben Siliziumkristalle mit Neutronen beschossen und auf diese Weise gezielt einzelne Atome aus dem Kristallgitter entfernt“, beschreibt Astakhov die Vorgehensweise im Labor. Eine Fehlstelle im ansonsten regelmäßigen Gitter: Das merken auch die benachbarten Bindungspartner und reagieren darauf in einer Art und Weise, dass der Kristall seine Eigenschaften verändert. In diesem Fall, wenn er mit Licht bestrahlt ist, sandte er Mikrowellen aus – und das eben schon bei Raumtemperatur.

„Das Prinzip funktioniert“: Dieser Nachweis ist den Würzburger Wissenschaftlern mit dem Siliziumkarbidkristall zum weltweit ersten Mal gelungen; mit dieser Entdeckung haben sie es bis in Nature Physics geschafft. Bis allerdings der erste Siliziumkarbid-Maser auf den Markt kommt, müssten noch viele, bislang noch unbeantwortete Fragen geklärt werden; außerdem bedürfe es dafür einer „konsequenten Technologieentwicklung“.

Neues DFG-Forschungsprojekt gestartet

Was allerdings die Suche nach den Antworten auf die ungelösten Fragen betrifft: Da ist Georgy Astakhov auf dem besten Weg. Für die Forschung an den Fehlstellen in Siliziumkarbidkristallen hat ihm die Deutsche Forschungsgemeinschaft vor wenigen Wochen ein neues Projekt genehmigt. Ausgestattet mit rund 300.000 Euro für einen weiteren Mitarbeiter und Material kann Astakhov damit in den kommenden drei Jahren die grundlegenden physikalischen Prozesse in dem Kristall unter die Lupe nehmen.

Dabei geht es allerdings nicht nur um die Entwicklung eines Masers. Interessant ist das modifizierte Siliziumkarbid noch für eine weitere Anwendung – als Halbleiter und Speichermedium in neuartigen Quantencomputern. Ein solcher Computer verarbeitet Informationen in Form von sogenannten Qubits. Basis dafür kann der Spin der Elektronen sein. Das ist – vereinfacht gesagt – deren Drehimpuls. Er kann in verschiedene Richtungen zeigen und deshalb viel mehr Information als ein klassisches Bit enthalten. Auswirkungen, die sich zur Informationsverarbeitung nutzen lassen.

Ein erprobtes Material

Was noch für das Kristall spricht: Siliziumkarbid ist in der technischen Anwendung weit verbreitet. Leuchtdioden, Transistoren, mikroelektromechanische Bauelemente oder Sensoren aus diesem Material sind bereits auf dem Markt. Das Knowhow zur Verarbeitung im großen Stil ist also längst vorhanden.

Room-temperature quantum microwave emitters based on spin defects in silicon carbide. H. Kraus, V. A. Soltamov, D. Riedel, S. Väth, F. Fuchs, A. Sperlich, P. G. Baranov, V. Dyakonov and G. V. Astakhov. Nature Physics, DOI: 10.1038/NPHYS2826

Kontakt

Prof. Dr. Vladimir Dyakonov, T: (0931)31-83111
E-Mail: dyakonov@physik.uni-wuerzburg.de
Dr. Georgy Astakhov, T: (0931) 31-85125
E-Mail: astakhov@physik.uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie