Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenelektrodynamik in einem relativistischen Drei-Elektronen-System

16.01.2013
Die Quantenelektrodynamik zählt heute zu den am besten überprüften Theorien in der Physik. Sie beschreibt die Wirkung von elektromagnetischen Kräften und bestimmt die Struktur von Atomen und Molekülen.
Zu den größten Herausforderungen dieser Theorie zählt neben ihrem Verhalten in sehr starken elektrischen Feldern die Beschreibung von Mehrelektronensystemen. Eine Forschergruppe des Max-Planck-Instituts für Kernphysik in Heidelberg hat nun gemeinsam mit Kollegen von der Universität Mainz und dem GSI Helmholtzzentrum für Schwerionenforschung die magnetischen Eigenschaften von einem einzelnen lithiumähnlichen Siliciumion mit, in Mehrelektronensystemen, bisher unerreichter Präzision vermessen.

Vor einem Jahrhundert legte Niels Bohr mit seinem Atommodell einen der Grundsteine für die Entwicklung der Quantenphysik und damit zum modernen Verständnis der Struktur der Materie. Seither wurde die Messgenauigkeit der Experimente immer weiter verfeinert, was nach den großen Erfolgen der Quantenmechanik schließlich zur Erweiterung auf eine allgemeine Theorie der elektromagnetischen Kräfte zwischen geladenen Teilchen führte: der Quantenelektrodynamik (QED). Diese gilt heute als eine der am besten überprüften Theorien in der Physik überhaupt und dient als Modell für andere fundamentale Theorien.

Der bisher genaueste Test der QED ist die Bestimmung der Magnetisierung (magnetisches Moment) des freien Elektrons. Das Elektron besitzt einen Eigendrehimpuls (Spin) und als geladenes Teilchen erzeugt es gleich einem mikroskopisch kleinen Kreisel ein Magnetfeld. Wie stark die Magnetisierung des Elektrons ist, wird durch den sogenannten g-Faktor beschrieben. In der relativistischen Quantenmechanik sollte dieser für das freie Elektron exakt den Wert 2 haben. Abweichungen davon sind ein Einfluss der Umgebung. Dazu zählt – wie die QED zeigt – schon das scheinbar leere Vakuum, welches aber von ‚virtuellen‘ Teilchen erfüllt ist.

Trotz des ungeheuren Erfolges der QED interessiert die Wissenschaftler, ob es einen Bereich gibt, z. B. in sehr starken Feldern, in dem die Theorie ihre Gültigkeit verliert. Solch hohe Felder lassen sich nicht direkt im Labor herstellen, sie herrschen aber auf natürliche Weise im Inneren von Atomen. So beträgt das elektrische Feld des Protons, welches das Elektron im Wasserstoffatom spürt, etwa 5 Milliarden Volt pro Zentimeter. Nimmt man statt einem Proton einen höher geladenen Kern, so kann man um Größenordnungen stärkere Felder erreichen. Einer Gruppe von Forschern um Klaus Blaum vom Heidelberger Max-Planck-Institut für Kernphysik war es gemeinsam mit Kollegen von der Universität Mainz und dem GSI Helmholtzzentrum für Schwerionenforschung 2011 gelungen, einzelne wasserstoffartige, also 13-fach geladene, Siliciumionen in einer speziellen Ionenfalle zu speichern und den g-Faktor des Elektrons auf die 10. Nachkommastelle genau zu bestimmen. Für diese präziseste Messung des g-Faktors für ein gebundenes Elektron erhielten Anke Wagner, Sven Sturm und Klaus Blaum den Helmholtz-Preis 2012.

Als nächsten Schritt untersuchten die Physiker ein 11-fach geladenes Siliciumion, das wie das Element Lithium drei Elektronen besitzt. Im Vergleich zum wasserstoffartigen System kommt hier noch die Wechselwirkung der Elektronen untereinander hinzu und ermöglicht somit einen Test der Mehrelektronen-Rechnungen. Die Messung des g-Faktors gelang mit einer Genauigkeit auf die 9. Nachkommastelle und ist die bislang genaueste Messung des g-Faktors eines solchen Systems aus mehreren Elektronen. Auch die theoretische Beschreibung ist eine Herausforderung in mehrfacher Hinsicht, denn das Verhalten der Elektronen, die mit dem Kern ein Vierkörpersystem bilden, ist durch relativistische Effekte dominiert. Die Gruppe von Vladimir M. Shabaev an der Staatlichen Universität Sankt Petersburg in Zusammenarbeit mit Theoretikern der Universität Dresden berechnete den g-Faktor für das lithiumähnliche Siliciumion und verbesserte die Genauigkeit auf die 8. Nachkommastelle. Das experimentelle und das theoretische Ergebnis stimmen innerhalb der verbleibenden Unsicherheiten hervorragend überein und stellen den aktuell genauesten Test von relativistischen Mehrelektronen-Rechnungen dar.

Die neuen Ergebnisse stellen einen wichtigen Fortschritt zum Test der QED dar, denn für einen noch genaueren Test der QED mit schwereren Kernen wird die Messung des g-Faktors von lithium- und wasserstoffähnlichen Ionen des gleichen Elements benötigt. Für andere wasserstoffartige Systeme liegen bereits Berechnungen mit einer 100- bis 1000-fach höheren Genauigkeit vor. Dies ermöglicht dann bei entsprechend hoher experimenteller Präzision, Naturkonstanten wie z. B. die Elektronenmasse mit verbesserter Unsicherheit zu bestimmen.

Originalveröffentlichung:
g Factor of Lithiumlike Silicon 28Si11+
A. Wagner et al.
Physical Review Letters 110, 033003 (2013)
doi: 10.1103/PhysRevLett.110.033003
Kontakt:

Prof. Dr. Klaus Blaum
MPI für Kernphysik
Tel: +49 6221 516-850
E-Mail: klaus.blaum@mpi-hd.mpg.de

Anke Wagner
MPI für Kernphysik und Johannes Gutenberg-Universität Mainz
Tel.: +49 6131 3922275
E-Mail: ankewag@uni-mainz.de
Weitere Informationen:

http://link.aps.org/doi/10.1103/PhysRevLett.110.033003
Originalveröffentlichung

http://www.mpi-hd.mpg.de/blaum/gfactor/index.de.html
g-Faktor-Experimente der Abteilung von Klaus Blaum am MPIK

http://www.mpg.de/4358343/quantenelektrodynamik_pruefstand
Quantenelektrodynamik auf dem Prüfstand

Dr. Bernold Feuerstein | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-hd.mpg.de
http://www.uni-mainz.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

nachricht Einblicke ins Atom
23.01.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie