Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenelektrodynamik in einem relativistischen Drei-Elektronen-System

16.01.2013
Die Quantenelektrodynamik zählt heute zu den am besten überprüften Theorien in der Physik. Sie beschreibt die Wirkung von elektromagnetischen Kräften und bestimmt die Struktur von Atomen und Molekülen.
Zu den größten Herausforderungen dieser Theorie zählt neben ihrem Verhalten in sehr starken elektrischen Feldern die Beschreibung von Mehrelektronensystemen. Eine Forschergruppe des Max-Planck-Instituts für Kernphysik in Heidelberg hat nun gemeinsam mit Kollegen von der Universität Mainz und dem GSI Helmholtzzentrum für Schwerionenforschung die magnetischen Eigenschaften von einem einzelnen lithiumähnlichen Siliciumion mit, in Mehrelektronensystemen, bisher unerreichter Präzision vermessen.

Vor einem Jahrhundert legte Niels Bohr mit seinem Atommodell einen der Grundsteine für die Entwicklung der Quantenphysik und damit zum modernen Verständnis der Struktur der Materie. Seither wurde die Messgenauigkeit der Experimente immer weiter verfeinert, was nach den großen Erfolgen der Quantenmechanik schließlich zur Erweiterung auf eine allgemeine Theorie der elektromagnetischen Kräfte zwischen geladenen Teilchen führte: der Quantenelektrodynamik (QED). Diese gilt heute als eine der am besten überprüften Theorien in der Physik überhaupt und dient als Modell für andere fundamentale Theorien.

Der bisher genaueste Test der QED ist die Bestimmung der Magnetisierung (magnetisches Moment) des freien Elektrons. Das Elektron besitzt einen Eigendrehimpuls (Spin) und als geladenes Teilchen erzeugt es gleich einem mikroskopisch kleinen Kreisel ein Magnetfeld. Wie stark die Magnetisierung des Elektrons ist, wird durch den sogenannten g-Faktor beschrieben. In der relativistischen Quantenmechanik sollte dieser für das freie Elektron exakt den Wert 2 haben. Abweichungen davon sind ein Einfluss der Umgebung. Dazu zählt – wie die QED zeigt – schon das scheinbar leere Vakuum, welches aber von ‚virtuellen‘ Teilchen erfüllt ist.

Trotz des ungeheuren Erfolges der QED interessiert die Wissenschaftler, ob es einen Bereich gibt, z. B. in sehr starken Feldern, in dem die Theorie ihre Gültigkeit verliert. Solch hohe Felder lassen sich nicht direkt im Labor herstellen, sie herrschen aber auf natürliche Weise im Inneren von Atomen. So beträgt das elektrische Feld des Protons, welches das Elektron im Wasserstoffatom spürt, etwa 5 Milliarden Volt pro Zentimeter. Nimmt man statt einem Proton einen höher geladenen Kern, so kann man um Größenordnungen stärkere Felder erreichen. Einer Gruppe von Forschern um Klaus Blaum vom Heidelberger Max-Planck-Institut für Kernphysik war es gemeinsam mit Kollegen von der Universität Mainz und dem GSI Helmholtzzentrum für Schwerionenforschung 2011 gelungen, einzelne wasserstoffartige, also 13-fach geladene, Siliciumionen in einer speziellen Ionenfalle zu speichern und den g-Faktor des Elektrons auf die 10. Nachkommastelle genau zu bestimmen. Für diese präziseste Messung des g-Faktors für ein gebundenes Elektron erhielten Anke Wagner, Sven Sturm und Klaus Blaum den Helmholtz-Preis 2012.

Als nächsten Schritt untersuchten die Physiker ein 11-fach geladenes Siliciumion, das wie das Element Lithium drei Elektronen besitzt. Im Vergleich zum wasserstoffartigen System kommt hier noch die Wechselwirkung der Elektronen untereinander hinzu und ermöglicht somit einen Test der Mehrelektronen-Rechnungen. Die Messung des g-Faktors gelang mit einer Genauigkeit auf die 9. Nachkommastelle und ist die bislang genaueste Messung des g-Faktors eines solchen Systems aus mehreren Elektronen. Auch die theoretische Beschreibung ist eine Herausforderung in mehrfacher Hinsicht, denn das Verhalten der Elektronen, die mit dem Kern ein Vierkörpersystem bilden, ist durch relativistische Effekte dominiert. Die Gruppe von Vladimir M. Shabaev an der Staatlichen Universität Sankt Petersburg in Zusammenarbeit mit Theoretikern der Universität Dresden berechnete den g-Faktor für das lithiumähnliche Siliciumion und verbesserte die Genauigkeit auf die 8. Nachkommastelle. Das experimentelle und das theoretische Ergebnis stimmen innerhalb der verbleibenden Unsicherheiten hervorragend überein und stellen den aktuell genauesten Test von relativistischen Mehrelektronen-Rechnungen dar.

Die neuen Ergebnisse stellen einen wichtigen Fortschritt zum Test der QED dar, denn für einen noch genaueren Test der QED mit schwereren Kernen wird die Messung des g-Faktors von lithium- und wasserstoffähnlichen Ionen des gleichen Elements benötigt. Für andere wasserstoffartige Systeme liegen bereits Berechnungen mit einer 100- bis 1000-fach höheren Genauigkeit vor. Dies ermöglicht dann bei entsprechend hoher experimenteller Präzision, Naturkonstanten wie z. B. die Elektronenmasse mit verbesserter Unsicherheit zu bestimmen.

Originalveröffentlichung:
g Factor of Lithiumlike Silicon 28Si11+
A. Wagner et al.
Physical Review Letters 110, 033003 (2013)
doi: 10.1103/PhysRevLett.110.033003
Kontakt:

Prof. Dr. Klaus Blaum
MPI für Kernphysik
Tel: +49 6221 516-850
E-Mail: klaus.blaum@mpi-hd.mpg.de

Anke Wagner
MPI für Kernphysik und Johannes Gutenberg-Universität Mainz
Tel.: +49 6131 3922275
E-Mail: ankewag@uni-mainz.de
Weitere Informationen:

http://link.aps.org/doi/10.1103/PhysRevLett.110.033003
Originalveröffentlichung

http://www.mpi-hd.mpg.de/blaum/gfactor/index.de.html
g-Faktor-Experimente der Abteilung von Klaus Blaum am MPIK

http://www.mpg.de/4358343/quantenelektrodynamik_pruefstand
Quantenelektrodynamik auf dem Prüfstand

Dr. Bernold Feuerstein | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-hd.mpg.de
http://www.uni-mainz.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise