Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenelektrodynamik auf dem Prüfstand

05.07.2011
Forscher bestätigen Quantenelektrodynamik in starken Feldern mit bislang unerreichter Präzision

In Goethes berühmtem Drama zweifelt der Gelehrte „Faust“ daran, dass die Wissenschaft ergründen kann, was die Welt im Innersten zusammenhält. Physiker setzen dieser Skepsis heute die Theorie der Quantenelektrodynamik entgegen. Sie beschreibt die Wirkung von elektrischen und magnetischen Kräften und bestimmt die Struktur von Atomen und Molekülen. Obwohl die Quantenelektrodynamik zu den am genauesten überprüften Theorien zählt, vermuten viele Physiker, dass sie bei sehr starken elektrischen Feldern versagen wird. Doch bei welchen Feldstärken tritt das ein? Eine Forschergruppe des Max-Planck-Instituts für Kernphysik in Heidelberg bestätigte gemeinsam mit Kollegen von der Universität Mainz und dem GSI Helmholtzzentrum für Schwerionenforschung die Theorie mit bislang unerreichter Genauigkeit. Ihre Methode eignet sich zudem, grundlegende Größen wie die Masse von Elektronen oder die Größe von Atomkernen zu messen.


Die drei Fallen sind in eine Apparatur integriert. Im linken Teil befindet sich die Erzeugungsfalle, in der Mitte die Analysefalle und rechts die Präzisionsfalle. Die gesamte Apparatur ist 18 Zentimeter lang. Die Grafik veranschaulicht das Silizium-Ion, das nur noch von einem Elektron umkreist wird, in der Präzisionsfalle. © MPI für Kernphysik

Um die Quantenelektrodynamik in einem möglichst starken elektrischen Feld zu testen, haben die Forscher um Klaus Blaum vom Max-Planck-Instituts für Kernphysik einen besonderen Ort ausgewählt: das Innere eines Atoms. Wenn man in einem Atom alle bis auf ein letztes Elektron entfernt, entsteht ein sogenanntes wasserstoffähnliches Ion. Für Ihr Experiment wählten die Physiker Silizium. In einem solchen Ion herrscht am Ort des verbleibenden Elektrons eine Feldstärke von etwa 3 · 1013 Volt pro Zentimeter. Das zählt zu den höchsten im Labor erreichbaren Werten.

Die Struktur dieses Ions hat die Theoretikergruppe um Christoph Keitel im Rahmen der Quantenelektrodynamik extrem genau berechnet. Damit stellt es die ideale Umgebung für einen Test der Theorie unter extremen Bedingungen dar.

Blaum und seine Mitarbeiter wählten Silizium, weil es die schwerste, in ihrer Apparatur noch handhabbare Atomsorte ist. Ein Silizium-Atom besitzt im Normalfall 14 Elektronen. Daher mussten die Physiker zunächst alle weiter außen kreisenden Elektronen entfernen, indem sie die Silizium-Atome mit anderen, schnellen Elektronen beschossen. Bei Kollisionen katapultierten diese ihre Partner aus dem Atom heraus.

Auf diese Weise erhielten die Forscher ein Sammelsurium aus Ionen in unterschiedlichen Ladungszuständen, die sich dank ihrer positiven Ladung in einer elektromagnetischen Falle einfangen lassen. Hierin überlagern sich ein starkes Magnetfeld und ein elektrisches Feld. „Letzteres kann man sich wie einen Topf vorstellen, in dem die Ionen wie Murmeln hineinfallen“, veranschaulicht der Erstautor der Arbeit Sven Sturm diese Technik.

Die Apparatur besteht aus drei Fallen. Von der Erzeugungsfalle gelangte die Wolke in die Präzisionsfalle. Dort wurden die Ionen einer gezielten Radiofrequenzanregung unterzogen mit der Folge, dass alle Ionen außer der gewünschten Spezies aus der Falle geworfen wurden. Übrig blieb ein Ensemble aus Silizium-Ionen mit nur noch einem Elektron. Dann wurde das elektrische Feld so verändert, dass sich die Wände des „Topfes“ immer weiter absenkten. Aus diesem immer flacher werdenden Topf fielen die energiereichsten Silizium-Ionen nach und nach heraus, bis nur noch ein einziges Ion übrig blieb. Dieses kann über Monate hinweg gespeichert werden und bildet so das Testteilchen für die Quantenelektrodynamik.

Das den Kern umkreisende Elektron kann man sich wie eine Kugel vorstellen, die den Kern umkreist und gleichzeitig um die eigene Achse rotiert. Dabei erzeugt es ein Magnetfeld. In einem sehr starken Magnetfeld ist die Spin-Achse entweder parallel oder antiparallel zu den Feldlinien ausgerichtet. Diese Ausrichtung stellten die Physiker in der dritten Abteilung, der Analysefalle, fest.

Ansprechpartner
Prof. Dr. Klaus Blaum
Max-Planck-Institut für Kernphysik, Heidelberg
Telefon: +49 62 21516-850
E-Mail: klaus.blaum@mpi-hd.mpg.de
Prof. Dr. Christoph H. Keitel
Max-Planck-Institut für Kernphysik, Heidelberg
Telefon: +49 6221 516-150
Fax: +49 6221 516-152
E-Mail: keitel@mpi-hd.mpg.de
Dr. Zoltan Harman
Max-Planck-Institut für Kernphysik, Heidelberg
Telefon: +49 6221 516-170
E-Mail: harman@mpi-hd.mpg.de
Ansprechpartner
Sven Sturm
Universität Mainz
Telefon: +49 61 313922-891
E-Mail: sturms@uni-mainz.de
Originalpublikation
S. Sturm et al.
g Factor of hydrogenlike 28Si13
Phys. Rev. Lett., im Druck

Prof. Dr. Klaus Blaum | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de
http://www.mpg.de/4358343/quantenelektrodynamik_pruefstand

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie