Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantendynamik von Materiewellen enthüllt Mehrteilchen-Kollisionen

13.05.2010
LMU-MPQ-Wissenschaftler weisen erstmals exotische Mehrteilchenwechselwirkung an ultrakalten Atomen in einem optischen Gitter nach.

Bei extrem tiefen Temperaturen können sich Atome in sogenannten Bose-Einstein-Kondensaten zu kohärenten, laserartigen Materiewellen zusammenschließen. Aufgrund der Wechselwirkungen der Atome untereinander entwickeln diese Materiewellen eine Art Eigendynamik, die zu einem zeitlich periodischen Zusammenbrechen und Wiederaufleben des Wellenfeldes führt.

Einer Gruppe um Prof. Immanuel Bloch (Lehrstuhl für Experimentalphysik an der Ludwig-Maximilians-Universität München und Direktor der Abteilung Quanten-Vielteilchensysteme am Max-Planck-Institut für Quantenoptik in Garching bei München) gelang es jetzt erstmals, diese Quantendynamik über lange Zeiten hinweg zu beobachten. Dazu erzeugten die Forscher Tausende von Miniatur-Bose-Einstein-Kondensaten, regelmäßig angeordnet in einem „optischen Gitter“, und verfolgten das Zusammenbrechen und Wiederaufleben der Materiewellen. Die genaue Analyse der Messreihen enthüllte eine komplexe Struktur in dieser Dynamik, die durch fundamentale Vielteilchenwechselwirkungen verursacht wird: entgegen gängigen Annahmen spielen dabei nicht nur paarweise Wechselwirkungen, sondern auch Stöße zwischen mehreren Atomen eine wichtige Rolle (Nature, DOI:10.1038/nature09036). Dieses Ergebnis ist einerseits von fundamentaler Bedeutung für das Verständnis von Quanten-Vielteilchensystemen; es ermöglicht andererseits die Erzeugung neuer exotischer Materiezustände, die auf solchen Vielteilchenwechselwirkungen basieren.

Das Experiment beginnt damit, eine dünne Wolke aus mehreren hunderttausend Atomen auf Temperaturen dicht über dem absoluten Nullpunkt abzukühlen. Bei diesen Temperaturen bildet sich ein Bose-Einstein-Kondensat (BEC) aus, eine Quantenphase, in der sich alle Atome im gleichen Quantenzustand befinden. Diesem BEC wird nun ein optisches Gitter überlagert: das ist eine Art künstlicher Kristall aus Licht, in dem sich durch Überlagerung mehrerer stehender Laserlichtwellen helle und dunkle Gebiete periodisch abwechseln. In diesem – einem Eierkarton ähnlichen – Kristall verteilen sich die Atome auf die Gitterplätze. Doch während in einem echten Eierkarton in einer Kuhle entweder genau ein Ei oder gar keins sitzt, werden die Besetzungszahlen hier von den Gesetzen der Quantenmechanik geregelt. Zwar ist die Wahrscheinlichkeit für ein oder zwei Atome an einem Gitterplatz am größten, aber bei entsprechender Einstellung der Gitterhöhe (d.h. der Laserintensität) können auch drei, vier oder mehr Atome vorkommen. Und da es sich hier um Quantenteilchen handelt, können alle Besetzungszahlen – mit unterschiedlichem Gewicht – gleichzeitig auftreten.

Die Existenz dieser Überlagerungszustände ist der Schlüssel für das neue Messprinzip. „So wie Pendel unterschiedlicher Länge auch unterschiedliche Schwingungsfrequenzen haben, so ist jeder Besetzungszustand durch eine bestimmte Eigenfrequenz charakterisiert“, erklärt Sebastian Will, Doktorand am Experiment. „Stöße zwischen den Atomen beeinflussen die Eigenfrequenzen. Würden die Atome z.B., wie bislang angenommen, immer nur paarweise zusammenstoßen, dann wären die Frequenzen höherer Besetzungszustände immer ein Vielfaches der Grundfrequenz eines Zweierzustands.“

Mit einer trickreichen experimentellen Anordnung gelang es den Physikern, die Überlagerung der verschiedenen Schwingungen in ihrer zeitlichen Entwicklung zu verfolgen. Die Wissenschaftler konnten beobachten, dass in regelmäßigen Zeitabständen Interferenzbilder auftreten – ein Zeichen dafür, dass die Schwingungen im Gleichtakt sind – und wieder zusammenfallen (siehe Abbildung unten). „Intensität und Periodizität der Interferenzbilder ergeben ein Schwebungsmuster, das sich mit einer reinen Paar-Wechselwirkung nicht in Einklang bringen lässt“, erklärt Sebastian Will. „Vielmehr muss ein komplexerer Stoßmechanismus wirksam sein, der auch die Wechselwirkung von mehreren Atomen miteinander, wir konnten eine Beteiligung von bis zu sechs nachweisen, einschließt.“ Solche exotischen Stöße sind möglich, da Heisenbergs Unschärfeprinzip den Atomen erlaubt, während der Kollision einen virtuellen Umweg über energetisch höher gelegene Quantenzustände zu nehmen.

Dieses Resultat ist überraschend und von grundlegender Bedeutung, um die Wechselwirkung zwischen mikroskopischen Teilchen besser zu verstehen. Gleichzeitig demonstriert es, mit welchem hohen Grad an Kontrolle sich Quantenmaterie in optischen Gittern manipulieren lässt. Diese außergewöhnliche Steuerbarkeit wollen die Wissenschaftler nutzen, um komplexe Festkörpersysteme zu „simulieren“ und die der Supraleitung oder dem Quantenmagnetismus zugrunde liegende Physik zu erklären. Ein weiterer Vorteil von optischen Gittern liegt darin, dass jeder der mehreren hunderttausend Gitterplätze ein Miniaturlabor darstellt, um exotische Quantenzustände zu erzeugen. Dies macht diese Anordnungen zu den wahrscheinlich empfindlichsten Messinstrumenten für die Beobachtung atomarer Stöße. Olivia Meyer-Streng

Originalveröffentlichung:
Sebastian Will, Thorsten Best, Ulrich Schneider, Lucia Hackermüller, Dirk-Sören Lühmann, Immanuel Bloch
„Time-resolved observation of coherent multi-body interactions in quantum phase revivals“

Nature, DOI:10.1038/nature09036, 13. Mai 2010

Kontakt:

http://www.quantum-munich.de

Dipl.-Phys. Sebastian Will
LMU München, Fakultät für Physik
Schellingstr. 4
80799 München
Tel.: +49 89 2180 6133
Tel. (mobil): +49 177 2581588
Fax: +49 89 2180 63851
E-Mail: sebastian.will@lmu.de
Prof. Dr. Immanuel Bloch
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Tel.: +49 89 32905 138
Fax: +49 89 32905 313
E-Mail: immanuel.bloch@mpq.mpg.de
Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Tel.: +49 - 89 / 32905 - 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenmechanik ist komplex genug – vorerst …
21.04.2017 | Universität Wien

nachricht Tief im Inneren von M87
20.04.2017 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: Neu entdeckter Exoplanet könnte bester Kandidat für die Suche nach Leben sein

Supererde in bewohnbarer Zone um aktivitätsschwachen roten Zwergstern gefunden

Ein Exoplanet, der 40 Lichtjahre von der Erde entfernt einen roten Zwergstern umkreist, könnte in naher Zukunft der beste Ort sein, um außerhalb des...

Im Focus: Resistiver Schaltmechanismus aufgeklärt

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft.

Wie ReRAM-Zellen genau funktionieren, ist jedoch bisher nicht vollständig verstanden. Insbesondere die Details der ablaufenden chemischen Reaktionen geben den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

Licht - ein Werkzeug für die Laborbranche

20.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligenter Werkstattwagen unterstützt Mensch in der Produktion

21.04.2017 | HANNOVER MESSE

Forschungszentrum Jülich auf der Hannover Messe 2017

21.04.2017 | HANNOVER MESSE

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungsnachrichten