Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenbit: Atomkern in Silizium-Chip genutzt

19.04.2013
Hohe Präzision im Festkörper als Schritt zu echten Quantencomputern

Forschern an der University of New South Wales (UNSW) ist es gelungen, einen Atomkern, oder genauer gesagt dessen magnetischen Spin, in einem Silizium-Chip als Quantenbit (Qubit) zu nutzen - und das mit höchster Präzision.


Ein Atom als Bit: So stellt sich das ein Künstler vor (Foto: unsw.edu.au)

Wie das Team aktuell in Nature berichtet, konnte es eine Auslesegenauigkeit von 99,8 Prozent erreichen - laut UNSW ein Rekordwert für ein Quantenbit in einem Festkörper "Das ist eine beeindruckende Leistung", bestätigt Philip Walther vom Fachbereich Quantenoptik, Quantennanophysik & Quanteninformation an der Universität Wien im Gespräch mit pressetext.

Die australische Arbeit hat nach Ansicht des Experten durchaus Potenzial, sich als wichtiger Schritt auf dem Weg zu funktionierenden Quantencomputern zu entpuppen. Denn im Fall von Silizium-Chips in der Halbleiterindustrie schon lange bewährte Fertigungsprozesse auf die Quanten-Zukunft übertragbar sein könnten. Das ist ein Vorteil gegenüber anderen Qubit-Ansätzen wie beispielsweise Ionenfallen in einer Vakuumkammer, die laut UNSW bisher als beste Qubits gelten - und jetzt Konkurrenz bekommen.

Präzision ohne Vakuum

Ein Qubit ist als kleinste Informationseinheit bei einem Quatencomputer eine wesentliche Voraussetzung für deren Umsetzung. Bislang gilt als vielversprechendster Ansatz die Ionenfalle, bei der einzelne Atome in einem elektromagnetischen Feld gefangen werden. Sie ermöglicht ein sehr genaues Arbeiten mit den Qubits. "Unser Kernspin-Qubit arbeitet bei einem ähnlichen Präzisionsniveau, ist aber nicht in einer Vakuumkammer - es ist ein Silizium-Chip, der wie herkömmliche integrierte Schaltkreise verdrahtet und elektrisch betrieben werden kann", sagt nun der UNSW-Elektrotechniker und Quantenphyisker Andrea Morello.

Eben das ist ein wichtiger Vorteil des Ansatzes, denn somit besteht die Chance, dass die langjährige Erfahrung der Silizium-basierten Halbleiter-Industrie für die Quanten-Zukunft genutzt werden kann. Denn im Prinzip nutzen die UNSW-Forscher einfach einen mit Phosphor dotierten Silizium-Chip. Der Kern eines Phosphor-Atoms dient ihnen als Qubit, das sie mithilfe von Magnetresonanz-Techniken ähnlich jenen, die bei der Magnetresonanztomografie zum Einsatz kommen, kontrollieren. So können sie Werte schreiben und lesen - und das mit höchster Genauigkeit.

Quanten-Speicher

"Wir haben eine Auslese-Zuverlässigkeit von 99,8 Prozent erreicht, was ein neuer Benchmark für Qubit-Genauigkeit in einem Festkörper ist", betont Andrew Dzurak, Nanoelektronik-Professor an der UNSW. Zwar geht das Team davon aus, dass zukünftige Quantencomputer eher Elektronenspin-Qubit als "Prozessor" nutzen werden, doch für die vergleichsweise lange stabilen Atomkern-Qubits sehen sie großes Potenzial beispielsweise als Speicher und in Logikgattern.

Im Vergleich zu anderen Festkörper-Qubits hat der Ansatz mit Phosphor-Kernen in Silizium nach Einschätzung von Walther noch aus einem weiteren Grund großes Potenzial. "Man könnte relativ viele dieser Qubits auf einem Chip unterbringen", erklärt der Quantenphysiker. Das könnte sich auf dem Weg zu funktionierenden Quantencomputern als großer Vorteil erweisen - immerhin ist ein Qubit das Quanten-Äquivalent zum Bit beim herkömmlichen Computer, es bedarf also einer großen Zahl, um wirklich komplexe Berechnungen durchzuführen.

Thomas Pichler | pressetext.redaktion
Weitere Informationen:
http://www.unsw.edu.au
http://www.quantum.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Sterngeburt in den Winden supermassereicher Schwarzer Löcher
28.03.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Das anwachsende Ende der Ordnung
27.03.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Warum der Brennstoffzelle die Luft wegbleibt

28.03.2017 | Biowissenschaften Chemie

Chlamydien: Wie Bakterien das Ruder übernehmen

28.03.2017 | Biowissenschaften Chemie

Sterngeburt in den Winden supermassereicher Schwarzer Löcher

28.03.2017 | Physik Astronomie