Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenbeugung an einem Hauch von Nichts

25.08.2015

Die Quantenphysik besagt, dass sich auch massive Objekte wie Wellen verhalten und scheinbar an vielen Orten zugleich sein können. Dieses Phänomen kann nachgewiesen werden, indem man diese Materiewellen an einem Gitter beugt. Eine europäische Kollaboration hat nun erstmals die Delokalisation von massiven Molekülen an einem Gitter nachgewiesen, das nur noch eine einzige Atomlage dick ist. Dieses Experiment lotete die technischen Grenzen der Materiewellentechnologie aus und knüpft dabei an ein Gedankenexperiment von Bohr und Einstein an. Die Ergebnisse werden aktuell im Journal "Nature Nanotechnology" veröffentlicht.

Die quantenmechanische Wellennatur der Materie ist die Grundlage für viele moderne Technologien, wie z. B. die höchstauflösende Elektronenmikroskopie, die Strukturuntersuchung von Festkörperphysik mit Neutronen oder in hochempfindlichen atomaren Trägheitssensoren.


Mit modernsten Fabrikationsmethoden können atomar dünne Nanomasken hergestellt werden, die sich als hinreichend robust für die molekulare Quantenoptik erweisen.

Copyright: Quantennanophysik, Fakultät für Physik, Universität Wien; Bild-Design: Christian Knobloch

In der Forschungsgruppe um Markus Arndt, Professor für Quantenphysik an der Universität Wien, wird die Frage erforscht, wie man die Grundlagen solcher Quantentechnologien auf große Moleküle oder Cluster übertragen und nutzen kann.

Um die quantenmechanische Wellennatur eines solchen Objekts zu demonstrieren, muss es zunächst delokalisiert werden. Dafür wird Heisenbergs Unschärferelation genutzt: Werden die Moleküle von einer punktförmigen Quelle auf die Reise geschickt, "vergessen" sie nach einiger Zeit, wo sie sich befinden.

Stellt man ihnen jetzt ein Gitter in den Weg, so wissen sie nicht, durch welchen Spalt sie fliegen. Es ist, als ob sie durch mehrere Spalte gleichzeitig gehen würden. Dadurch entsteht eine charakteristische Verteilung der Teilchen hinter dem Gitter, ein Beugungs- oder Interferenzmuster, das man nur aufgrund der quantenmechanischen Wellennatur verstehen kann.

Am nanotechnologischen Limit

In einem europäischen Konsortium mit Partnern um Ori Cheshnovsky von der Tel Aviv University, wo die Nanomasken geschrieben wurden, sowie mit Unterstützung von Gruppen in Jena (Biphenyl-Nanomembranen, Prof. Turchanin) und Wien (höchstauflösende Elektronenmikroskopie, Prof. Meyer) zeigen sie erstmals, dass solche Strukturen auch in die dünnsten möglichen Membranen geschrieben werden können.

Mittels fokussierter Ionenstrahlen wurden nanomechanische Gitter in ultradünne Membranen aus Siliziumnitrid, Biphenylmolekülen und Kohlenstoff geschrieben und diese in höchstauflösender Elektronenmikroskopie analysiert. Dabei gelang es schließlich, stabile und hinreichend großflächige Strukturen selbst in atomar dünnem, einlagigem Graphen herzustellen.

Schon in früheren Experimenten waren solche Gitter nur etwa ein Hundertstel eines Haardurchmessers dick. Aber selbst solche hauchdünnen Strukturen sind noch zu dick, wenn die daran gebeugten Moleküle aus Dutzenden von Atomen bestehen. Kräfte, die auch zum Beispiel dafür verantwortlich sind, dass Geckos an der Wand laufen können, schränken die Anwendbarkeit von materiellen Gittern ein.

So ziehen die Wände des Gitters auch die fliegenden Moleküle aus dem Strahl, so dass sie für den Versuch verloren gehen. "Es war eine große Herausforderung, die Dicke dieser Gitter – und damit die angesprochenen Kräfte – bis auf das fundamental mögliche Minimum zu reduzieren, und dennoch eine stabile Beugungsstruktur zu bauen", erläutert Markus Arndt.

"Das sind die dünnsten Beugungsstrukturen für die Materiewellenoptik, die je geschaffen wurden. Trotzdem sind sie so robust, dass sie ihren Zweck sehr gut erfüllen", freut sich auch Christian Brand, Erstautor der Studie, und ergänzt: "Bei einer Dicke von nur einem millionstel Millimeter beeinflusst das Gitter die hindurchfliegenden Moleküle nur noch für wenige billionstel Sekunden.“

Ein Gedankenexperiment von Bohr und Einstein

Jedes Nanogitter ähnelt einer winzigen Harfe. Damit stellt sich die Frage, ob die Moleküle, die mal nach rechts und mal nach links gebeugt werden, diese Harfe in Schwingung versetzen können. Wäre dies der Fall, so würde die je angestoßene Saite den Weg des Moleküls verraten, und die charakteristische Quanteninterferenz würde verschwinden. Dieses Modell realisiert ein Gedankenexperiment zwischen Niels Bohr und Albert Einstein, die vor vielen Jahrzehnten darüber debattierten, ob es möglich sei, den Weg eines Quantums durch einen Doppelspalt zu kennen und dennoch seine Wellennatur (das Interferenzbild) zu sehen.

"Und wieder ist es Werner Heisenbergs Unschärfe, welche die Situation klärt: Obwohl die Moleküle bei der Beugung am Gitter abgelenkt werden und es ein wenig in Bewegung versetzen, ist dieser Rückstoß immer noch kleiner als die natürliche, quantenmechanische Bewegungsunschärfe des Gitters und somit prinzipiell nicht messbar. Das gilt sogar für Strukturen, die nur ein Atom dick sind", so Arndt abschließend.

Publikation in "Nature Nanotechnology":
"An atomically thin matter-wave beamsplitter"; C. Brand, M. Sclafani, C. Knobloch, Y. Lilach, T. Juffmann, J. Kotakoski, C. Mangler, A. Winter, A. Turchanin, J. Meyer, O. Cheshnovsky, M. Arndt; Nature Nanotechnology (2015),
DOI: 10.1038/nnano.2015.179

Wissenschaftlicher Kontakt
Dr. Christian Brand‚
Quantum Nanophysics, VCQ, QuNaBioS,
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43 1 4277 511 72
brandc6@univie.ac.at

Univ. Prof. Markus Arndt,
Quantum Nanophysics, VCQ, QuNaBioS,
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43 1 4277 512 10
markus.arndt@univie.ac.at

Rückfragehinweis
Stephan Brodicky
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 41
stephan.brodicky@univie.ac.at

Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 19 Fakultäten und Zentren arbeiten rund 9.700 MitarbeiterInnen, davon 6.900 WissenschafterInnen. Die Universität Wien ist damit die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 92.000 nationale und internationale Studierende inskribiert. Mit über 180 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. http://univie.ac.at

1365 gegründet, feiert die Alma Mater Rudolphina Vindobonensis im Jahr 2015 ihr 650-jähriges Gründungsjubiläum mit einem vielfältigen Jahresprogramm – unterstützt von zahlreichen Sponsoren und Kooperationspartnern. Die Universität Wien bedankt sich dafür bei ihren KooperationspartnerInnen, insbesondere bei: Österreichische Post AG, Raiffeisen NÖ-Wien, Bundesministerium für Wissenschaft, Forschung und Wirtschaft, Stadt Wien, Industriellenvereinigung, Erste Bank, Vienna Insurance Group, voestalpine, ÖBB Holding AG, Bundesimmobiliengesellschaft, Mondi. Medienpartner sind: ORF, Die Presse, Der Standard.

Stephan Brodicky | Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

nachricht Innovative High Power LED Light Engine für den UV Bereich
22.06.2017 | Omicron - Laserage Laserprodukte GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der Form eine Funktion verleihen

23.06.2017 | Informationstechnologie

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungsnachrichten

Rudolf-Virchow-Preis 2017 – wegweisende Forschung zu einer seltenen Form des Hodgkin-Lymphoms

23.06.2017 | Förderungen Preise