Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quanten-Wiederkehr: Alles wird wieder wie früher

23.02.2018

Wenn man lange genug wartet, sehen komplizierte Systeme wieder so aus wie am Anfang. An der TU Wien konnte das nun erstmals in einem Vielteilchen-Quantensystem gezeigt werden.

Es ist eines der bemerkenswertesten Ergebnisse der Physik: Wenn man ein kompliziertes System sich selbst überlässt, dann kehrt es irgendwann mit fast perfekter Genauigkeit zum Anfangszustand zurück. Gasteilchen beispielsweise, die zufällig und chaotisch in einem Behälter herumschwirren, werden irgendwann Positionen annehmen, die fast genau ihren Anfangspositionen entsprechen.


Der Atom-Chip zum Kontrollieren der Atomwolken

TU Wien


Die Poincarésche Wiederkehr und die Bewegung von Kugeln: Der Anfangszustand stellt sich irgendwann wieder ein.

TU Wien

Dieser „Poincarésche Wiederkehrsatz“ ist die Basis der modernen Chaostheorie. Seit Jahrzehnten wird untersucht, inwieweit er auch in der Welt der Quantenphysik seine Gültigkeit hat. Nun gelang es an der TU Wien erstmals, eine Form von „Poincaréscher Wiederkehr“ in Quantensystemen aus vielen Teilchen nachzuweisen. Die Ergebnisse wurden im Fachjournal „Science“ veröffentlicht.

Uralte Frage unter neuem Gesichtspunkt

Der französische Wissenschaftler Henri Poincaré beschäftigte sich am Ende des 19. Jahrhunderts mit Systemen von Teilchen, die zu kompliziert sind, um sie alle genau zu berechnen – etwa Sonnensysteme, in denen sich viele Planeten und Asteroiden gegenseitig beeinflussen, oder Gasteilchen, die ständig aneinanderstoßen.

Sein überraschendes Ergebnis: Jeder physikalisch mögliche Zustand wird irgendwann auch eingenommen – zumindest in sehr guter Näherung, man muss nur ziemlich lange warten. Irgendwann werden alle Planeten zufällig eine gerade Linie bilden, irgendwann werden sich Gasteilchen zufällig zu interessanten Mustern zusammenfinden – oder genau zu dem Zustand zurückkehren, den sie zu Beginn des Experiments eingenommen haben.

Ein ähnliches Theorem lässt sich auch für Quantensysteme beweisen, allerdings gelten dort völlig andere Gesetze. „In der Quantenphysik muss man Poincarés Fragestellung völlig neu überdenken“, erklärt Prof. Jörg Schmiedmayer vom Atominstitut der TU Wien. „Der Zustand eines großen Quantensystems, das aus vielen Teilchen besteht, lässt sich prinzipiell niemals perfekt messen. Außerdem kann man die Teilchen nicht unabhängig voneinander betrachten, man muss berücksichtigen, dass sie quantenphysikalische miteinander verschränkt sind.“

Es gab bereits Versuche, den Effekt der „Poincaréschen Wiederkehr“ zu einem bestimmten Ausgangszustand mit Quantensystemen zu demonstrieren, allerdings nur mit einigen wenigen Teilchen, deren Quantenzustand man möglichst gut zu messen versuchte. Das ist extrem kompliziert, und die Zeit bis zur möglichen Wiederkehr des gewünschten Zustands steigt mit der Anzahl der Teilchen drastisch an.

Das Team von Jörg Schmiedmayer wählte allerdings einen ganz anderen Zugang: „Uns interessiert nicht der vollständige innere Zustand des Systems, denn der ist ohnehin nicht ermittelbar“, sagt Bernhard Rauer, Erstautor der Publikation. „Stattdessen stellen wir die Frage: Welche beobachtbaren Größen gibt es, die uns etwas über das Gesamtsystem sagen? Und gibt es Zeiten, zu denen diese Größen wieder den Wert annehmen, den sie anfangs hatten?“

Untersucht wurde das Verhalten eines ultrakalten Gases aus tausenden Atomen, das von elektromagnetischen Feldern auf einem Chip festgehalten wurde. „Es gibt verschiedene physikalische Größen, mit denen man ein solches Quantengas charakterisieren kann – zum Beispiel Kohärenzlängen im Gas und Korrelationsfunktionen zwischen unterschiedlichen Punkten. Diese Größen geben an, wie stark die einzelnen Teilchen quantenphysikalisch in Beziehung miteinander stehen“, sagt Sebastian Erne, der für die theoretischen Berechnungen des Forschungsprojekts zuständig war.

„Für unseren Alltagsverstand ist das nicht besonders intuitiv, in unserer makroskopischen Welt spielen solche Größen keine Rolle, aber in einem Quantensystem sind genau das die entscheidenden Parameter.“

Wiederkehr entdeckt – in kollektiven Größen

Beim Messen solcher Größen, die nicht einzelne Teilchenbeschreiben, sondern eine Aussage über das ganze Ensemble von Teilchen liefern, gelang es tatsächlich, die vieldiskutierten Wiederkehr-Effekte zu messen. Und nicht nur das: „Wir können mit unserem Atomchip sogar beeinflussen, wie lange die Zeitdauer sein soll, bis ein bestimmter Messzustand wiederkehrt“, berichtet Jörg Schmiedmayer. „Durch das genaue Ausmessen der Wiederkehr lernen wir viel über die kollektive Dynamik der Atome. Etwa über die Schallgeschwindigkeit im Gas oder wie Dichtewellen aneinander streuen.“

Die alte Frage, ob auch Quantensysteme zum Ursprungszustand zurückkehren, lässt sich also mit ja beantworten – allerdings ein bisschen anders als man bisher dachte. Anstatt dem vollständigen inneren Zustand eines Systems hinterherzulaufen, der ohnehin nie genau gemessen werden kann, ist es sinnvoller, sich auf die Größen zu konzentrieren, die quantenmechanisch tatsächlich beobachtbar sind. Und diesen Größen kann man dabei zusehen, wie sie von ihrem Anfangszustand wegdriften – und schließlich wieder zurückkehren.

Originalpublikation: Rauer et al., Recurrences in an isolated quantum many-body system, Science 10.1126/science.aan7938 (2018).

Rückfragehinweise:
Prof. Jörg Schmiedmayer
Atominstitut
Technische Universität Wien
Stadionallee 2, 1020 Wien
T: +43-1-58801-141801
hannes-joerg.schmiedmayer@tuwien.ac.at

Weitere Informationen:

https://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2018/recurrence weitere Bilder

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Countdown für Kilogramm, Kelvin und Co.
18.05.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt
18.05.2018 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

Tagung »Anlagenbau und -betrieb der Zukunft«

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Wie Immunzellen Bakterien mit Säure töten

18.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics