Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Quanten-Volt“ auf Halbleiterbasis

31.07.2012
PTB präsentiert eine Alternative zu Josephson-Kontakten

Nahezu die ganze Welt der Elektronik arbeitet inzwischen mit Halbleitern. Das galt auch für die Präzisionsmesstechnik, allerdings mit Ausnahme der genauesten Normale für Spannungsmessungen, der Quanten-Spannungsnormale. Jetzt ziehen Halbleiter-Materialien auch hier ein: Nach dem Quanten-Ohm und dem Quanten-Ampere kommt das Quanten-Volt.


Prinzipskizze der Halbleiter-Quanten-Spannungsquelle. Über einem schmalen Halbleiterkanal liegen drei Kontrollelektroden G1 bis G3, von denen zwei mit Gleichspannungen (V1, V2)angesteuert werden. Die zusätzliche Wechselspannungsmodulation VAC an der Elektrode G1 führt zur Erzeugung des quantisierten Stroms, der im anschließenden Quanten-Hall-Widerstand eine quantisierte Spannung Vout erzeugt.
Abbildung: PTB

Als Alternative zu den etablierten Josephson-Kontakten, die mithilfe von Supraleitung funktionieren, haben Wissenschaftler der Physikalisch-Technischen Bundesanstalt (PTB) nun eine Quanten-Spannungsquelle auf der Basis von Halbleitertechnologie entwickelt.

Das neuartige Quanten-Volt könnte helfen, das sogenannte quantenelektrische Dreieck zu schließen, und könnte somit große Bedeutung für das „neue SI“ sein, die geplante Neufassung eines nur auf Fundamentalkonstanten beruhenden Internationalen Einheitensystems. Die Ergebnisse sind in der aktuellen Ausgabe von Physical Review Letters veröffentlicht.

Wer die elektrischen Einheiten mit höchster Genauigkeit messen will, der misst sie quantenweise. In Metrologie-Instituten wie der PTB nutzt man dabei in geschickter Weise das Zusammenspiel zweier Fundamentalkonstanten: des Planck’schen Wirkungsquantums h und der Elementarladung e. Sie spielen in den verschiedenen Kombinationen die Hauptrolle in den Quantennormalen für alle drei elektrischen Einheiten. Zwei von ihnen, nämlich das „Quanten-Ohm“ und auch das „Quanten-Ampere“ (das als „offizielles Quantennormal“ noch im Entstehen ist), werden inzwischen aus speziellen Halbleiter-Materialien hergestellt. Nun kommt auch das „Quanten-Volt“ aus diesen Materialien dazu.

Grundlage für die neue Halbleiter-Quanten-Spannungsquelle ist eine Einzelelektronenpumpe, die von einer Wechselspannung der Frequenz f angetrieben wird und einen Strom der Größe I = e ∙ f erzeugt. Die Einzelelektronenpumpe wurde auf einer integrierten Halbleiterschaltung mit einem Quanten-Hall-Widerstand kombiniert. Das Ergebnis ist eine quantisierte Ausgangsspannung von Vout = (h/e) ∙ f. Interessanterweise ist diese Ausgangsspannung im Prinzip identisch mit der einer supraleitenden Josephson-Schaltung, beruht allerdings auf gänzlich unterschiedlichen physikalischen Effekten. Zum Betrieb der im Bild schematisch dargestellten Quanten-Spannungsquelle sind zwei Gleichspannungen und eine Hochfrequenz-Wechselspannung zur Kontrolle der Einzelelektronenpumpe nötig. Die Halbleiterschaltung zeigt eine robuste Quantisierung der Ausgangsspannung bis zu Frequenzen von einigen Gigahertz. Auf diese Weise können Ausgangsspannungen bis zu 10 Mikrovolt erzeugt werden. „Diese Ausgangsspannung wollen wir in Zukunft noch deutlich steigern“, sagt PTB-Physiker Frank Hohls. Sein Team möchte sie noch um den Faktor 1000 erhöhen, etwa durch die Parallelschaltung mehrerer Einzelelektronenpumpen sowie durch Serienschaltung mehrerer Quanten-Hall-Widerstände auf dem Halbleiterchip. „Außerdem können wir damit quantisierte Werte der drei wichtigsten elektrischen Einheiten Stromstärke, Spannung und Widerstand erzeugen – und das mit einer einzigen Apparatur“, erläutert Hohls.

Für eine besonders interessante Anwendung könnte die neue Spannungsquelle mit den herkömmlichen Josephson-Kontakten kombiniert werden. So könnte durch den Vergleich dieser beiden unterschiedlichen Quantennormale (mit höchster Genauigkeit) das sogenannte quantenmetrologische Dreieck geschlossen werden. Das wäre ein großer Nutzen für das geplante „neue“ Internationale Einheitensystem SI, das ausschließlich auf Fundamentalkonstanten beruhen wird. jk/es/ptb

Wissenschaftliche Veröffentlichung
F. Hohls et al.: Integrated quantized electronics: a semiconductor quantized voltage source. arXiv:1103.1746v1. Physical Review Letters, published online: July 31, 2012.
Ansprechpartner
Dr. Frank Hohls, PTB-Fachbereich 2.5 Halbleiterphysik und Magnetismus, Tel. (0531) 592-2410, E-Mail: frank.hohls@ptb.de

Dr. Dr. Jens Simon
Presse- und Öffentlichkeitsarbeit, PÖ
Physikalisch-Technische Bundesanstalt PTB
Bundesallee 100
38116 Braunschweig

Tel.: (0531) 592-3005
Fax: (0531) 592-3008
E-Mail: jens.simon@ptb.de
Mobil: (0151) 12 11 44 08

Imke Frischmuth | PTB
Weitere Informationen:
http://www.ptb.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Atome rennen sehen - Phasenübergang live beobachtet
30.03.2017 | Universität Duisburg-Essen

nachricht Flipper auf atomarem Niveau
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE