Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Quanten-Volt“ auf Halbleiterbasis

31.07.2012
PTB präsentiert eine Alternative zu Josephson-Kontakten

Nahezu die ganze Welt der Elektronik arbeitet inzwischen mit Halbleitern. Das galt auch für die Präzisionsmesstechnik, allerdings mit Ausnahme der genauesten Normale für Spannungsmessungen, der Quanten-Spannungsnormale. Jetzt ziehen Halbleiter-Materialien auch hier ein: Nach dem Quanten-Ohm und dem Quanten-Ampere kommt das Quanten-Volt.


Prinzipskizze der Halbleiter-Quanten-Spannungsquelle. Über einem schmalen Halbleiterkanal liegen drei Kontrollelektroden G1 bis G3, von denen zwei mit Gleichspannungen (V1, V2)angesteuert werden. Die zusätzliche Wechselspannungsmodulation VAC an der Elektrode G1 führt zur Erzeugung des quantisierten Stroms, der im anschließenden Quanten-Hall-Widerstand eine quantisierte Spannung Vout erzeugt.
Abbildung: PTB

Als Alternative zu den etablierten Josephson-Kontakten, die mithilfe von Supraleitung funktionieren, haben Wissenschaftler der Physikalisch-Technischen Bundesanstalt (PTB) nun eine Quanten-Spannungsquelle auf der Basis von Halbleitertechnologie entwickelt.

Das neuartige Quanten-Volt könnte helfen, das sogenannte quantenelektrische Dreieck zu schließen, und könnte somit große Bedeutung für das „neue SI“ sein, die geplante Neufassung eines nur auf Fundamentalkonstanten beruhenden Internationalen Einheitensystems. Die Ergebnisse sind in der aktuellen Ausgabe von Physical Review Letters veröffentlicht.

Wer die elektrischen Einheiten mit höchster Genauigkeit messen will, der misst sie quantenweise. In Metrologie-Instituten wie der PTB nutzt man dabei in geschickter Weise das Zusammenspiel zweier Fundamentalkonstanten: des Planck’schen Wirkungsquantums h und der Elementarladung e. Sie spielen in den verschiedenen Kombinationen die Hauptrolle in den Quantennormalen für alle drei elektrischen Einheiten. Zwei von ihnen, nämlich das „Quanten-Ohm“ und auch das „Quanten-Ampere“ (das als „offizielles Quantennormal“ noch im Entstehen ist), werden inzwischen aus speziellen Halbleiter-Materialien hergestellt. Nun kommt auch das „Quanten-Volt“ aus diesen Materialien dazu.

Grundlage für die neue Halbleiter-Quanten-Spannungsquelle ist eine Einzelelektronenpumpe, die von einer Wechselspannung der Frequenz f angetrieben wird und einen Strom der Größe I = e ∙ f erzeugt. Die Einzelelektronenpumpe wurde auf einer integrierten Halbleiterschaltung mit einem Quanten-Hall-Widerstand kombiniert. Das Ergebnis ist eine quantisierte Ausgangsspannung von Vout = (h/e) ∙ f. Interessanterweise ist diese Ausgangsspannung im Prinzip identisch mit der einer supraleitenden Josephson-Schaltung, beruht allerdings auf gänzlich unterschiedlichen physikalischen Effekten. Zum Betrieb der im Bild schematisch dargestellten Quanten-Spannungsquelle sind zwei Gleichspannungen und eine Hochfrequenz-Wechselspannung zur Kontrolle der Einzelelektronenpumpe nötig. Die Halbleiterschaltung zeigt eine robuste Quantisierung der Ausgangsspannung bis zu Frequenzen von einigen Gigahertz. Auf diese Weise können Ausgangsspannungen bis zu 10 Mikrovolt erzeugt werden. „Diese Ausgangsspannung wollen wir in Zukunft noch deutlich steigern“, sagt PTB-Physiker Frank Hohls. Sein Team möchte sie noch um den Faktor 1000 erhöhen, etwa durch die Parallelschaltung mehrerer Einzelelektronenpumpen sowie durch Serienschaltung mehrerer Quanten-Hall-Widerstände auf dem Halbleiterchip. „Außerdem können wir damit quantisierte Werte der drei wichtigsten elektrischen Einheiten Stromstärke, Spannung und Widerstand erzeugen – und das mit einer einzigen Apparatur“, erläutert Hohls.

Für eine besonders interessante Anwendung könnte die neue Spannungsquelle mit den herkömmlichen Josephson-Kontakten kombiniert werden. So könnte durch den Vergleich dieser beiden unterschiedlichen Quantennormale (mit höchster Genauigkeit) das sogenannte quantenmetrologische Dreieck geschlossen werden. Das wäre ein großer Nutzen für das geplante „neue“ Internationale Einheitensystem SI, das ausschließlich auf Fundamentalkonstanten beruhen wird. jk/es/ptb

Wissenschaftliche Veröffentlichung
F. Hohls et al.: Integrated quantized electronics: a semiconductor quantized voltage source. arXiv:1103.1746v1. Physical Review Letters, published online: July 31, 2012.
Ansprechpartner
Dr. Frank Hohls, PTB-Fachbereich 2.5 Halbleiterphysik und Magnetismus, Tel. (0531) 592-2410, E-Mail: frank.hohls@ptb.de

Dr. Dr. Jens Simon
Presse- und Öffentlichkeitsarbeit, PÖ
Physikalisch-Technische Bundesanstalt PTB
Bundesallee 100
38116 Braunschweig

Tel.: (0531) 592-3005
Fax: (0531) 592-3008
E-Mail: jens.simon@ptb.de
Mobil: (0151) 12 11 44 08

Imke Frischmuth | PTB
Weitere Informationen:
http://www.ptb.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften