Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quanten-Spinflüssigkeit simuliert - Neuer Ansatz für Supraleiter?

08.04.2010
Elektronen in einer wabenförmigen Kristallstruktur können einen exotischen Zustand der Materie annehmen, den Physiker als "Quanten-Spinflüssigkeit" bezeichnen.

Deren Besonderheit besteht darin, dass ihre Elektronen bis zum absoluten Nullpunkt von minus 273 Grad Celsius ungeordnet bleiben, weil die sonst übliche Tendenz zur Ordnung selbst bei diesen Minusgraden durch die Fluktuationen der Elektronen (Quantenfluktuationen) unterbunden wird.

Um das zu erreichen, müssen die Quantenfluktuationen stark genug sein, was in der Natur sehr selten und in Modellen typischerweise kaum realisierbar ist. Zi Yang Meng, Dr. Stefan Wessel und Prof. Alejandro Muramatsu vom Institut für Theoretische Physik III der Uni Stuttgart ist es nun zusammen mit Ihren Würzburger Kollegen Thomas Lang und Prof. Fakher Assaad gelungen, das Auftreten einer Quanten-Spinflüssigkeit in einem realitätsnahen Modell aufzuzeigen - mit einer aufwendigen Simulationsrechnung, die sowohl die gegenseitige Abstoßung der Elektronen als auch ihre Quantenfluktuationen effizient erfasst. Über die Arbeit berichtete die Zeitschrift "Nature" in ihrer Ausgabe vom 8. April.*)

Elektronen in einem Kristall treten in unterschiedlichen Zuständen auf. In vielen Fällen entscheidet die Kristallstruktur, ob das Material zum Beispiel ein Metall mit einer elektrischen Leitfähigkeit ist oder ein Isolator, der keinen elektrischen Strom trägt. Es gibt jedoch isolierende Materialien, in denen aufgrund der Kristallstruktur eigentlich metallisches Verhalten zu erwarten wäre. In solchen so genannten "Mott-Isolatoren" unterdrückt die gegenseitige Abstoßung der Elektronen das metallische Verhalten, und die Elektronen sitzen regelrecht an den Atomen fest. Diese lokalisierten Elektronen neigen dazu, bei sinkenden Temperaturen geordnete Zustände anzunehmen, wie etwa magnetisch geordnete Strukturen. Bei einer "Quanten-Spinflüssigkeit" hingegen handelt es sich um einen nicht-magnetischen Mott-Isolator, der durch Effekte der Quantenmechanik stabilisiert wird.

Die von den Wissenschaftlern gefundene Quanten-Spinflüssigkeit lässt sich in Materialen erzeugen, in denen die Atome in einer Ebene das Muster einer Honigwabe bilden. Genau diese Struktur zeigt zum Beispiel Graphen, ein zweidimensionales Material aus Kohlenstoffatomen, das erst seit wenigen Jahren hergestellt und seitdem intensiv erforscht wird. Gelänge es, in einer solchen Gitterstruktur die Wechselwirkungen zwischen den Elektronen gezielt zu erhöhen, ließe sich der Zustand einer Quanten-Spinflüssigkeit schaffen. Dass dies in Graphen gelingen kann, erscheint jedoch fraglich. Daher schlagen die Stuttgarter und Würzburger Physiker einen anderen Weg vor, etwa Schichten aus Elementen der vierten Hauptgruppe mit einer höheren elektronischen Wechselwirkung. Als ersten Schritt in diese Richtung war es Chemikern gelungen, graphen-artige Strukturen aus Silizium-Atomen zu synthetisieren. Weiterhin sollte sich die Quanten-Spinflüssigkeit mit ultra-kalten Atomen realisieren lassen. Denn das von den Theoretikern untersuchte Modell beschreibt neben Elektronen im Festkörper auch das Verhalten von ultra-kalten Atomen in optischen Gittern. In diesem neuen Forschungsfeld wurden in den letzten Jahren große Fortschritte gemacht, die hoffen lassen, dass sich auch die Quanten-Spinflüssigkeit mit ultra-kalten Atomen realisieren lässt. Interessant ist diese auch deshalb, weil sie ein möglicher Ausgangspunkt für einen so genannten Supraleiter sein kann: Elektrischer Strom würde dann ganz ohne Widerstand und damit verlustfrei durch das Material fließen. Anwenden könnte man das zum Beispiel für superschnelle Computerchips oder verlustfreie Stromversorgungsnetze.

In Ihrer Grundlagenforschung untersuchen die Stuttgarter und Würzburger Theoretiker komplexe Zustände von Quanten-Vielteilchensystemen in Festkörpern. Die Quanten-Spinflüssigkeit fanden sie bei der Erforschung des Überganges zwischen den Zuständen "Metall" und "Mott-Isolator" in einem theoretischen Modell für Graphene. In der Nähe solcher Übergänge, so fanden die Forscher, sind die Quantenfluktuationen so stark, dass die magnetische Ordnung unterdrückt wird. Auch andere elektronische Ordnungen konnten die Physiker durch systematische Analysen ausschließen. Die dazu notwendigen Berechnungen erfordern den Einsatz moderner Supercomputer. Hier profitierten die Physiker von der Effizienz der Hochleistungsrechenzentren in Stuttgart, Jülich und München. Für die Zukunft erhoffen sich die Wissenschaftler von der Simulation, neue Materialen mit exotischen Zuständen wie die Quanten-Spinflüssigkeit auch gezielt designen zu können.

Die Untersuchungen fügen sich eng in das Forschungsumfeld beider Universitäten ein. So wird an der Uni Stuttgart innerhalb des Sonderforschungsbereichs SFB/TRR 21 "Controll of Quantum Correlations in Tailored Matter" der Deutschen Forschungsgemeinschaft (DFG) gezielt an der Realisierung maßgeschneiderter Quantenmaterie geforscht. Der Sprecher dieses SFBs ist Prof. Tilmann Pfau von der Uni Stuttgart. Komplexe elektronische Zustände stehen auch im Zentrum der neu gegründeten Würzburger DFG-Forschergruppe "Electron Correlation-Induced Phenomena in Surfaces and Interfaces with Tuneable Interactions", deren Sprecher der Würzburger Prof. Ralph Claessen ist.

*) Zi Yang Meng, Thomas C. Lang, Stefan Wessel, Fakher F. Assaad, and Alejandro Muramatsu: "Quantum spin-liquid emerging in two-dimensional correlated Dirac fermions", Nature, DOI:10.1038/nature08942.

Weitere Informationen:
Universität Stuttgart, Institut für Theoretische Physik III, Dr. Stefan Wessel, Tel. 0711/685 65206, e-mail: wessel@itp3.uni-stuttgart.de sowie Prof. Alejandro Muramatsu, Tel. 0711/65204, e-mail: mu@theo3.physik.uni-stuttgart.de

Universität Würzburg: Institut für Theoretische Physik, Prof. Fakher Assaad, Tel. 0931/31-83652, e-mail: assaad@physik.uni-wuerzburg.de

Ursula Zitzler | idw
Weitere Informationen:
http://www.uni-stuttgart.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie