Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quanten-Spinflüssigkeit simuliert - Neuer Ansatz für Supraleiter?

08.04.2010
Elektronen in einer wabenförmigen Kristallstruktur können einen exotischen Zustand der Materie annehmen, den Physiker als "Quanten-Spinflüssigkeit" bezeichnen.

Deren Besonderheit besteht darin, dass ihre Elektronen bis zum absoluten Nullpunkt von minus 273 Grad Celsius ungeordnet bleiben, weil die sonst übliche Tendenz zur Ordnung selbst bei diesen Minusgraden durch die Fluktuationen der Elektronen (Quantenfluktuationen) unterbunden wird.

Um das zu erreichen, müssen die Quantenfluktuationen stark genug sein, was in der Natur sehr selten und in Modellen typischerweise kaum realisierbar ist. Zi Yang Meng, Dr. Stefan Wessel und Prof. Alejandro Muramatsu vom Institut für Theoretische Physik III der Uni Stuttgart ist es nun zusammen mit Ihren Würzburger Kollegen Thomas Lang und Prof. Fakher Assaad gelungen, das Auftreten einer Quanten-Spinflüssigkeit in einem realitätsnahen Modell aufzuzeigen - mit einer aufwendigen Simulationsrechnung, die sowohl die gegenseitige Abstoßung der Elektronen als auch ihre Quantenfluktuationen effizient erfasst. Über die Arbeit berichtete die Zeitschrift "Nature" in ihrer Ausgabe vom 8. April.*)

Elektronen in einem Kristall treten in unterschiedlichen Zuständen auf. In vielen Fällen entscheidet die Kristallstruktur, ob das Material zum Beispiel ein Metall mit einer elektrischen Leitfähigkeit ist oder ein Isolator, der keinen elektrischen Strom trägt. Es gibt jedoch isolierende Materialien, in denen aufgrund der Kristallstruktur eigentlich metallisches Verhalten zu erwarten wäre. In solchen so genannten "Mott-Isolatoren" unterdrückt die gegenseitige Abstoßung der Elektronen das metallische Verhalten, und die Elektronen sitzen regelrecht an den Atomen fest. Diese lokalisierten Elektronen neigen dazu, bei sinkenden Temperaturen geordnete Zustände anzunehmen, wie etwa magnetisch geordnete Strukturen. Bei einer "Quanten-Spinflüssigkeit" hingegen handelt es sich um einen nicht-magnetischen Mott-Isolator, der durch Effekte der Quantenmechanik stabilisiert wird.

Die von den Wissenschaftlern gefundene Quanten-Spinflüssigkeit lässt sich in Materialen erzeugen, in denen die Atome in einer Ebene das Muster einer Honigwabe bilden. Genau diese Struktur zeigt zum Beispiel Graphen, ein zweidimensionales Material aus Kohlenstoffatomen, das erst seit wenigen Jahren hergestellt und seitdem intensiv erforscht wird. Gelänge es, in einer solchen Gitterstruktur die Wechselwirkungen zwischen den Elektronen gezielt zu erhöhen, ließe sich der Zustand einer Quanten-Spinflüssigkeit schaffen. Dass dies in Graphen gelingen kann, erscheint jedoch fraglich. Daher schlagen die Stuttgarter und Würzburger Physiker einen anderen Weg vor, etwa Schichten aus Elementen der vierten Hauptgruppe mit einer höheren elektronischen Wechselwirkung. Als ersten Schritt in diese Richtung war es Chemikern gelungen, graphen-artige Strukturen aus Silizium-Atomen zu synthetisieren. Weiterhin sollte sich die Quanten-Spinflüssigkeit mit ultra-kalten Atomen realisieren lassen. Denn das von den Theoretikern untersuchte Modell beschreibt neben Elektronen im Festkörper auch das Verhalten von ultra-kalten Atomen in optischen Gittern. In diesem neuen Forschungsfeld wurden in den letzten Jahren große Fortschritte gemacht, die hoffen lassen, dass sich auch die Quanten-Spinflüssigkeit mit ultra-kalten Atomen realisieren lässt. Interessant ist diese auch deshalb, weil sie ein möglicher Ausgangspunkt für einen so genannten Supraleiter sein kann: Elektrischer Strom würde dann ganz ohne Widerstand und damit verlustfrei durch das Material fließen. Anwenden könnte man das zum Beispiel für superschnelle Computerchips oder verlustfreie Stromversorgungsnetze.

In Ihrer Grundlagenforschung untersuchen die Stuttgarter und Würzburger Theoretiker komplexe Zustände von Quanten-Vielteilchensystemen in Festkörpern. Die Quanten-Spinflüssigkeit fanden sie bei der Erforschung des Überganges zwischen den Zuständen "Metall" und "Mott-Isolator" in einem theoretischen Modell für Graphene. In der Nähe solcher Übergänge, so fanden die Forscher, sind die Quantenfluktuationen so stark, dass die magnetische Ordnung unterdrückt wird. Auch andere elektronische Ordnungen konnten die Physiker durch systematische Analysen ausschließen. Die dazu notwendigen Berechnungen erfordern den Einsatz moderner Supercomputer. Hier profitierten die Physiker von der Effizienz der Hochleistungsrechenzentren in Stuttgart, Jülich und München. Für die Zukunft erhoffen sich die Wissenschaftler von der Simulation, neue Materialen mit exotischen Zuständen wie die Quanten-Spinflüssigkeit auch gezielt designen zu können.

Die Untersuchungen fügen sich eng in das Forschungsumfeld beider Universitäten ein. So wird an der Uni Stuttgart innerhalb des Sonderforschungsbereichs SFB/TRR 21 "Controll of Quantum Correlations in Tailored Matter" der Deutschen Forschungsgemeinschaft (DFG) gezielt an der Realisierung maßgeschneiderter Quantenmaterie geforscht. Der Sprecher dieses SFBs ist Prof. Tilmann Pfau von der Uni Stuttgart. Komplexe elektronische Zustände stehen auch im Zentrum der neu gegründeten Würzburger DFG-Forschergruppe "Electron Correlation-Induced Phenomena in Surfaces and Interfaces with Tuneable Interactions", deren Sprecher der Würzburger Prof. Ralph Claessen ist.

*) Zi Yang Meng, Thomas C. Lang, Stefan Wessel, Fakher F. Assaad, and Alejandro Muramatsu: "Quantum spin-liquid emerging in two-dimensional correlated Dirac fermions", Nature, DOI:10.1038/nature08942.

Weitere Informationen:
Universität Stuttgart, Institut für Theoretische Physik III, Dr. Stefan Wessel, Tel. 0711/685 65206, e-mail: wessel@itp3.uni-stuttgart.de sowie Prof. Alejandro Muramatsu, Tel. 0711/65204, e-mail: mu@theo3.physik.uni-stuttgart.de

Universität Würzburg: Institut für Theoretische Physik, Prof. Fakher Assaad, Tel. 0931/31-83652, e-mail: assaad@physik.uni-wuerzburg.de

Ursula Zitzler | idw
Weitere Informationen:
http://www.uni-stuttgart.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen