Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quanten-Odyssee in der Ionenfalle

31.08.2009
MPQ-Wissenschaftler demonstrieren "Quantenwanderung" an einzelnen gefangenen Ionen.

Viele klassische Rechenalgorithmen beinhalten sogenannte "random walks", bei denen mögliche Lösungswege nach dem Zufallsprinzip ausgewählt werden. Solche Algorithmen finden in einer Reihe von Gebieten eine Anwendung, z.B. in der Physik, Biologie, in den Wirtschaftswissenschaften oder sogar in der Psychologie.


In einem Quantenirrgarten liegen alle Wege in einem Superpositionszustand vor und können daher gleichzeitig beschritten werden. Die als Folge der Überlagerung auftretenden Interferenzen führen zu seltsamen Phänomenen wie der Selbstbegegnung des Quantenwanderers. Mit diesen \"Tricks\" kann der Ausgang aus dem Irrgarten, z.B. die gesuchte Lösung eines Algorithmus oder auch die effizienteste Form von Energietransfer in Pflanzen, um ein Vielfaches schneller als auf klassische Weise gefunden werden. MPQ/ Tobias Schätz

Überträgt man "random walks" auf Quantensysteme, dann erübrigen sich solche Entscheidungsfindungen. Denn im Unterschied zum klassischen Verfahren liegen die in Frage kommenden Pfade in einem Superpositionszustand vor, sodass bei "Quantenwanderungen" alle gleichzeitig beschritten werden können. Die dabei auftretenden Interferenzen führen zu neuartigen Phänomenen: so kann der "Quantenwanderer" sich z.B. an manchen Kreuzungen selbst begegnen.

"Quantum walks" könnten zum einen Rechenalgorithmen für Quantensysteme erheblich beschleunigen. Sie könnten aber auch dazu beitragen, den an mesoskopischen Systemen zu Tage tretenden Grenzbereich zwischen der klassischen und der quantenmechanischen Welt besser zu begreifen. Mit einem "proof-of-principle experiment" in einer elektromagnetischen Falle haben jetzt Dr. Tobias Schätz, Leiter der Nachwuchsgruppe "Quantensimulationen" am Max-Planck-Institut für Quantenoptik in Garching bei München, und seine Mitarbeiter erstmals deutlich den Unterschied zwischen der klassischen und der quantenmechanischen "Odyssee", mit einem Ion als Wanderer, demonstriert (Physical Review Letters, 28. August 2009).

Jedes Mal, wenn wir an eine Kreuzung kommen, müssen wir uns - vielleicht per Münzwurf - zwischen mehreren Wegen entscheiden. Nach mehreren Kreuzungen und Entscheidungen werden wir nur einige von vielen möglichen Pfaden gegangen sein. Dabei kann es vorkommen, dass manche Wege häufiger als andere beschritten werden.

Im Gegensatz dazu braucht sich ein "Quantenwanderer" nicht zu entscheiden, denn er hat gar keine Wahl. Beim jedem Münzwurf wird vielmehr eine Superposition von Kopf und Zahl erzeugt, sodass er allen Pfaden gleichzeitig folgen kann. Dabei kann es zu sonderbaren Situationen kommen, z.B. kann der Quantenwanderer, wenn Pfade an späteren Kreuzungen wieder aufeinanderstoßen, sich selbst begegnen. Aufgrund von Interferenzeffekten kann sich die Wahrscheinlichkeit dafür, an dieser Kreuzung zu sein, erhöhen, aber auch soweit verringern, dass er von dort gänzlich verschwindet.

In dem hier beschriebenen Experiment spielt ein einzelnes Magnesium-Ion, das in einer linearen elektromagnetischen Falle festgehalten wird, die Rolle des Quantenwanderers. Sein Bewegungsgrundzustand ist sozusagen die Ausgangsposition, von der aus es losmarschiert. Durch Einstrahlung von Radiofrequenz-Pulsen wird eine Überlagerung von zwei elektronischen Zuständen angeregt. Dieser Vorgang entspricht dem Münzwurf, durch den man eine Superposition von "linker" und "rechter" Wegentscheidung (Kopf und Zahl) erhält. Den notwendigen "Schubs", sich in Bewegung zu setzen, erhält das Ion durch ultraviolettes Licht einer genau abgestimmten Frequenz. Abhängig von seinem elektronischen Zustand wird das Ion von dem UV-Licht mal nach links und mal nach rechts gestoßen. Da die beiden elektronischen Zustände - Kopf und Zahl - in einem Überlagerungszustand vorliegen, werden auch die beiden Bewegungsmöglichkeiten des Ions - Schritt nach rechts und/oder Schritt nach links - überlagert. Bei der Quantenwanderung sind daher die beiden Münzwerte mit den beiden Bewegungsmöglichkeiten des Ions hochgradig verschränkt.

Die Vorgänge "Münzwurf" und "Positionswechsel" werden insgesamt drei Mal wiederholt, erst dann können Quanteneffekte sichtbar werden. Nach Beendigung dieser "Quantenevolution" wird gemessen, ob die Münze Kopf oder Zahl zeigt und auf welcher Position sich das Ion befindet. Dabei wird ausgenutzt, dass das Ion nur in einem der beiden "Münzzustände" Fluoreszenzlicht aussendet. Nach etwa tausend Messungen erhalten die Physiker so eine statistische Aussage darüber, wie häufig das Ion nach "rechts" oder "links" gegangen ist. Ihre Messdaten bestätigen die theoretische Vorhersage eines Ungleichgewichtes beider Richtungen, im Gegensatz zu dem, was man von einem klassischen System erwarten würde.

Die Gruppe von Tobias Schätz hat mit diesem Experiment, bei dem der Wanderer/das Ion alle Wege gleichzeitig gehen darf, deutlich die Unterschiede zum klassischen Gegenstück aufgedeckt: Die Quanteninterferenz verstärkt asymmetrische, nicht-klassische Verteilungen in den miteinander hochverschränkten Münzwurf- und Bewegungszuständen. Derzeit ist die Zahl der Wiederholungsschritte noch durch nichtlineare Effekte begrenzt. Die Wissenschaftler schlagen ein neues Konzept vor, mit dem sich die Quantenwanderung auf viele, im Prinzip sogar mehrere hundert Schritte ausdehnen lässt.

"Quantenwanderungen" könnten für eine Reihe von Anwendungen von fundamentalem Interesse sein. So lässt sich die Geschwindigkeit, den richtigen Weg zu finden, unter Umständen gewaltig steigern, wenn man nicht nach dem Zufallsprinzip einen nach dem anderen ausprobieren muss, sondern gleichzeitig alle beschreiten kann. Die Leistungsfähigkeit von Suchalgorithmen in der Informationsverarbeitung könnte dadurch erheblich gesteigert werden. Es gibt desweiteren Überlegungen, dass dieses quantenmechanische Verhalten auch für den Energietransfer in Pflanzen verantwortlich ist, der auf viele Wege verteilt weit effektiver verläuft, als mit klassischen Verfahren erreichbar wäre.

[Olivia Meyer-Streng/Tobias Schätz]

Originalveröffentlichung:
H. Schmitz, R. Matjeschk, C. Schneider, J. Glückert, M. Enderlein, T. Huber und T. Schätz
"Quantum walk of a trapped ion in phase space"
Physical Review Letters, 28. August 2009
Kontakt:
Dr. Tobias Schätz
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Telefon: +49 - 89 / 32905 - 199
Fax: +49 - 89 / 32905 - 311
E-Mail: tobias.schaetz@mpq.mpg.de
Dr. Olivia Meyer-Streng
Presse & Kommunikation
Max-Planck-Institut für Quantenoptik
Telefon: +49 - 89 / 32905 - 213
Fax: +49 - 89 / 32905 - 200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle
07.12.2016 | Goethe-Universität Frankfurt am Main

nachricht Das Universum enthält weniger Materie als gedacht
07.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie