Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quanten im Blitzlicht

16.09.2011
Ähnlich wie ein Kamerablitz in der Dunkelheit verborgene Objekte zum Vorschein bringt, kann mithilfe von kurzen Laserlichtpulsen das schwer nachzuweisende Quantenverhalten von mikromechanischen Objekten beleuchtet werden.

Dieses Verfahren soll eine bisher unerreichte Genauigkeit für derzeitige Experimente liefern, die die Grenzen zwischen Quantenwelt und "klassischer Welt" hin zu immer größeren Objekten verschieben. Ein internationales Team um Forscher des Vienna Center for Quantum Science and Technology (VCQ) an der Universität Wien präsentiert diese neue Methode in der aktuellen Ausgabe der renommierten Zeitschrift PNAS.


Mit "gepulster Quanten-Optomechanik" kann man das quantenmechanische Verhalten in der Bewegung eines makroskopischen Objekts direkt testen. Das wird in dieser Darstellung eines Schrödinger-Katzen-Zustandes als Rippel sichtbar (links). Unter kontinuierlicher Beobachtung verwaschen diese Quanteneffekte (rechts). Bildrechte: VCQ/Universität Wien

Eine der faszinierendsten und noch immer offenen Fragen der modernen Physik ist, inwieweit Quantenphänomene an Objekten unserer Alltagswelt beobachtbar sind. Um dies zu beantworten, werden Quantenexperimente an immer größeren und schwereren Objekten durchgeführt. Und da bedarf es einiger Tricks, denn je größer und schwerer die im Experiment verwendeten Objekte sind, umso schwieriger wird es, Quanteneffekte sichtbar zu machen.

Der Lichtblitz als "Scharfzeichner"

Die von den Forschern präsentierte Methode der "gepulsten Quanten-Optomechanik" verwendet Lichtpulse, ähnlich einem Blitzlicht, die für Quantenmessungen an großen Objekten eine bislang unerreichte Genauigkeit ermöglichen. Die Funktionsweise des neuen Schemas beruht darauf, dass sich Quantenobjekte, im Widerspruch zu den Gesetzen der klassischen Physik, unter Beobachtung anders verhalten als im unbeobachteten Zustand. "Derzeit werden Objekte in solchen Experimenten kontinuierlich beobachtet. Dadurch werden allerdings die meisten Quantenphänomene verwaschen, ähnlich wie bei einem verschwommenen Foto einer schnellen Bewegung", sagt Michael Vanner, Erstautor der Studie und Mitglied des Wiener Doktoratskollegs Complex Quantum Systems (CoQuS). "Die Lichtpulse frieren die Bewegung sozusagen ein und erzeugen dadurch ein gestochen scharfes Bild des Quantenverhaltens."

Wie groß können "Quanten" sein?

Mit der gepulsten Quanten-Optomechanik kann ein gänzlich neuer Blick in die Quantenwelt von Objekten geworfen werden, die größer und schwerer als die bisher untersuchten Objekte sind. Insbesondere kann diese Methode unmittelbar in laufenden Experimenten angewandt werden. Konkret untersuchen die Forscher Experimente, die Quantenphänomene in mikro-mechanischen Resonatoren, d.h. in vibrierenden, massiven Objekten beobachten wollen. "Indem man die Bewegung der Objekte unter die 'gepulste' Lupe nimmt, kann man beispielsweise herausfinden, ob makroskopische, mechanische Objekte in künftigen Quanten-Technologien eingesetzt werden können. Dies wird außerdem dazu beitragen, ein neues Licht auf die in der Natur scheinbar auftretende Trennung zwischen der Quantenwelt und der klassischen Welt zu werfen", meint Michael Vanner.

Internationale Kooperation

Diese Arbeit ist unter der gemeinsamen Beteiligung von Forschern des Vienna Center for Quantum Science and Technology (VCQ) der Universität Wien, Imperial College London, des Instituts für Quantenoptik und Quanteninformation (IQOQI), des Albert-Einstein Instituts der Universität Hannover und der Universität Queensland entstanden. Das Projekt wurde unterstützt von: Australian Research Council, Engineering and Physical Sciences Research Council, European Research Council, Europäische Kommission, Foundational Questions Institute, Österreichischer Fonds zur Förderung der wissenschaftlichen Forschung und Österreichische Akademie der Wissenschaften.

Publikation
Pulsed quantum optomechanics. M. R. Vanner, I. Pikovski, G. D. Cole, M. S. Kim, È. Brukner, K. Hammerer, G. J. Milburn, and M. Aspelmeyer. In: Proceedings of the National Academy of Sciences USA (PNAS). DOI: 10.1073/pnas.1105098108
Wissenschaftlicher Kontakt
Mag. Michael R. Vanner
Doktoratskolleg Complex Quantum Systems
Universität Wien
T +43-1-4277-725 33
michael.vanner@univie.ac.at
Rückfragehinweis
Mag. Alexandra Seiringer
Vienna Center for Quantum Science and Technology (VCQ)
Universität Wien
T +43-1-4277-725 31
vcq@quantum.at
aspelmeyer-office@univie.ac.at

Veronika Schallhart | idw
Weitere Informationen:
http://www.univie.ac.at
http://www.pnas.org/content/early/2011/09/06/1105098108.abstract
http://vcq.quantum.at/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Flashmob der Moleküle
19.01.2017 | Technische Universität Wien

nachricht Verkehrsstau im Nichts
19.01.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

21.500 Euro für eine grüne Zukunft – Unserer Umwelt zuliebe

20.01.2017 | Unternehmensmeldung

innovations-report im Interview mit Rolf-Dieter Lafrenz, Gründer und Geschäftsführer der Hamburger Start ups Cargonexx

20.01.2017 | Unternehmensmeldung

Niederlande: Intelligente Lösungen für Bahn und Stahlindustrie werden gefördert

20.01.2017 | Förderungen Preise