Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Qualitätskontrolle für Quantensimulatoren

18.11.2015

Wissenschaftler der FU Berlin, der Universidade Federal do Rio de Janeiro und des MPQ entwickeln neues Verfahren für die Zertifizierung photonischer Quantensimulatoren

Die Entwicklung von Geräten, welche die Gesetze der Quantenphysik ausnutzen, hat in den letzten 20 Jahren beeindruckende Fortschritte gemacht. Die neuen Quantentechnologien versprechen eine Reihe spannender Anwendungen, z.B. in der Informationsverarbeitung oder für die sichere Verschlüsselung von Daten. Deshalb wird schon über ihre Kommerzialisierung nachgedacht.


Grafik: Hintergrund: Public Domain / Stempel: ICFO, Spain

Doch ein wesentliches Hindernis dafür, einen aufwendigen experimentellen Aufbau in ein käufliches Produkt zu überführen, ist der Mangel an praktischen Testverfahren, die seine Funktionalität „zertifizieren“. Für photonische Quantengeräte, in denen Lichtquanten die Träger und Übermittler der Quanteninformation sind, hat jetzt ein internationales Team ein neues Zertifizierungsverfahren vorgeschlagen.

Die von Prof. Dr. Jens Eisert (Freie Universität Berlin), Prof. Dr. Leandro Aolita (Universidade Federal do Rio de Janeiro), Dr. Christian Gogolin, Postdoc-Wissenschaftler in der Abteilung Theorie von Prof. Ignacio Cirac am MPQ (Garching) und Research Fellow am ICFO (Barcelona), sowie Martin Kliesch (Freie Universität Berlin) entwickelte Methode zeichnet sich durch Verlässlichkeit und Einfachheit aus.

Sie ist ein wichtiger Schritt auf dem Weg, quantenmechanisches Verhalten von Vielteilchensystemen kontrolliert nutzbar zu machen (Nature Communications, 18. November 2015, DOI 10.1038/NCOMMS9498).

Quantensimulation oder auch Quantenkryptographie haben in den letzten Jahren zunehmend an Bedeutung gewonnen. Ultimatives Ziel aller Anstrengungen auf diesem Gebiet ist ein „General Purpose Quantum Computer“– ein Gerät also, das sich für die Lösung vieler verschiedenartiger Probleme eignet und dabei deutliche Geschwindigkeitsvorteile gegenüber klassischen Rechnern hat.

Doch auf welchem Weg dieses Ziel erreicht werden kann, ist derzeit noch Gegenstand aktiver Forschung. Allerdings gibt es eine Art Zwischenstufe, die in greifbarer Nähe liegt, sogenannte Quantensimulatoren. Mit Hilfe von Quanteneffekten können sie zumindest einige spezielle Probleme lösen, die sich mit klassischen Verfahren nicht effizient behandeln lassen. Sie sind also schnell, jedoch nicht universell einsetzbar.

Eine Plattform für die Implementierung von Quantensimulatoren ist die Quantenoptik. Hier werden die quantenmechanischen Eigenschaften von Lichtquanten (sogenannten Photonen) wie Verschränkung und Superposition ausgenutzt. Aber wie kann man überprüfen, ob die Maschinen, die mit solchen mikroskopischen Teilchen arbeiten, wirklich so wie gewünscht funktionieren?

„Gerade bei diesen nicht universellen Quantensimulatoren gestaltet sich die Zertifizierung sehr schwierig“, erklärt Dr. Christian Gogolin. „Denn die Möglichkeiten des Quantensimulators, Rechnungen auszuführen, sind begrenzt. Man kann also nicht einfach ein beliebiges Testprogramm laufen lassen, sondern braucht eines, das speziell auf die Fähigkeiten des Simulators zugeschnitten ist.“

Das Problem der Zertifizierung lässt sich als eine Art Spiel verstehen, bei dem ein mächtiger Spieler, nennen wir ihn Merlin, gegen einen weit weniger mächtigen Spieler, nennen wir ihn Arthur, antritt. Merlin behauptet, einen Quantensimulator zu besitzen, doch Arthur ist skeptisch.

Er möchte überprüfen, ob Merlin tatsächlich einen Quantensimulator hat, mit dem er Aufgaben lösen kann, die seine (Arthurs) eigene Fähigkeiten übersteigen. Ziel ist es, einen Weg aufzuzeigen, wie sich Arthur – trotz seinen begrenzten Möglichkeiten – davon überzeugen kann, dass Merlin einen funktionierenden Quantensimulator besitzt.

In ihrer Veröffentlichung schlagen die Wissenschaftler einen Test vor, mit dem sich genau dies bei einer Reihe verschiedener optischer Quantensimulatoren erreichen lässt. Der skeptische Arthur muss dafür in der Lage sein, Messungen an einzelnen Photonen durchzuführen.

Darüber hinaus benötigt er einen klassischen Computer, der die Lösungen von Merlins Quantensimulator überprüft und sicherstellt, dass dieser korrekt funktioniert. Nach einer berechenbaren Anzahl von „Spielrunden“ kann Arthur zum Beispiel zu 99% sicher sein, dass Merlin einen gewählten Zielzustand bis auf eine fest vorgegebene Abweichung genau präparieren kann.

Experimentelle Techniken ermöglichen mittlerweile eine erstaunliche Vielfalt bei der Nutzung von Quanteneffekten. Umso wichtiger wird es nachzuweisen, dass diese Methoden auch den an sie gestellten Anforderungen genügen. „Bislang wurde wesentlich mehr Aufwand in die Realisierung von Quantentechniken als in ihre Zertifizierung gesteckt“, führt Prof. Jens Eisert aus.

„Jetzt ist man an einem Punkt angekommen, an dem dieser Engpass weitere experimentelle Fortschritte behindert. Unsere hier vorgeschlagene Methode ist praktisch und verlässlich. Sie ist zwar auf optische Implementierungen zugeschnitten, lässt sich aber im Prinzip auch auf nicht-photonische Quantentechnologien anwenden und liefert damit einen Beitrag, das Problem der Zertifizierung allgemein anzugehen.“ Olivia Meyer-Streng

Orginalveröffentlichung:
Leandro Aolita, Christian Gogolin, Martin Kliesch, and Jens Eisert
Reliable quantum certification for photonic quantum technologies
Nature Communications, 18. November 2015, DOI 10.1038/NCOMMS9498

Kontakt:

Prof. Dr. Ignacio Cirac
Honorarprofessor, TU München
Direktor am Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 -705/736
Telefax: +49 (0)89 / 32 905 -336
E-Mail: ignacio.cirac@mpq.mpg.de

Dr. Christian Gogolin
ICFO - The Institute of Photonic Sciences
Mediterranean Technology Park, Av. Carl Friedrich Gauss, 3,
08860 Castelldefels (Barcelona), Spanien
Telefon: +34 935 54 22 37
E-Mail: christian.gogolin@icfo.es

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik,
Garching b. München
Telefon: +49 (0)89 / 32 905 -235
E-Mail: olivia.meyer-streng@mpq.mpg.de

Weitere Informationen:

http://www.mpq.mpg.de/Theorygroup/CIRAC

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Bilder magnetischer Strukturen auf der Nano-Skala
20.04.2018 | Georg-August-Universität Göttingen

nachricht Licht macht Ionen Beine
20.04.2018 | Max-Planck-Institut für Festkörperforschung, Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics