Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pulsare als Atomuhren

25.06.2010
Die Korrektur von Rotationsinstabilitäten macht Neutronensterne zu den besten Zeitmessern im Universum

Ein internationales Team von Astronomen hat das Verhalten von kosmischen Uhren untersucht und dabei ein Verfahren entdeckt, das sie zu den mit Abstand genauesten Zeitmessern im Universum macht. Die Wissenschaftler, darunter Michael Kramer vom Max-Planck-Institut für Radioastronomie in Bonn, werteten dazu die Signale von Pulsaren aus. Diese beobachten Forscher bereits mehrere Jahrzehnte mit dem 76-Meter-Radioteleskop am englischen Observatorium Jodrell-Bank. (Science Express, 24. Juni 2010)


Schematische Darstellung eines Pulsars. Pulsare stellen die genauesten natürlichen Uhren dar, die man bisher kennt. Bild: D. Cantin, DarwinDimensions, McGill Universität

Pulsare sind kompakte Überreste sehr massereicher Sterne, die am Ende ihres Lebens als Supernova explodierten. In einer solchen stellaren "Leiche", auch Neutronenstern genannt, ist die Materie extrem dicht gepackt, der Durchmesser auf etwa 20 Kilometer geschrumpft. Der erste Pulsar wurde im Jahr 1967 entdeckt. Mehr als 1700 solcher Objekte kennen die Astronomen heute, und sie untersuchen sie vor allem im Bereich der Radiofrequenzen. Pulsare drehen sich mit hoher Geschwindigkeit um ihre Achse, wobei sie gerichtete Strahlung aussenden. Überstreicht der Strahlungskegel die Erde, scheint der Stern kurz aufzublitzen - zu "pulsieren" (daher die Bezeichnung Pulsar).

Pulsare besitzen eine hohe Rotationsstabilität, das heißt, sie halten die Dauer einer Drehung um ihre Achse mit extremer Genauigkeit ein. Diese Tatsache hat unter anderem zur Entdeckung der ersten extrasolaren Planeten geführt und ermöglicht eine Reihe von Tests zur Überprüfung unserer Theorien über das Universum. Allerdings ist diese Rotationsstabilität nicht perfekt, und irreguläre Effekte in ihrem Umlauf schränken die Verwendung der Pulsare als hochpräzise Zeitmesser erheblich ein.

Das Forscherteam, angeführt von Andrew Lyne, hat Beobachtungen von Pulsaren mit dem 76-Meter-Lovell-Radioteleskop dazu verwendet, diese Abweichungen systematisch zu untersuchen und dabei eine Methode entdeckt, mit der sie sich korrigieren lassen. "Die besten Uhren der Menschheit benötigen alle eine Korrektur, etwa um die Effekte von schwankenden Temperaturen, unterschiedlichem atmosphärischem Druck, Feuchtigkeit oder dem lokalen Magnetfeld auszugleichen", sagt Lyne. "In unseren Beobachtungen haben wir eine Methode gefunden, unsere astrophysikalischen Uhren, die Pulsare, zu korrigieren."

Die Umdrehungsgeschwindigkeit, mit der die Pulsare um ihre Achse rotieren, nimmt mit der Zeit ganz langsam, aber unregelmäßig ab. Die Wissenschaftler haben herausgefunden, dass diese Unregelmäßigkeit vor allem dadurch entsteht, dass es zwei unterschiedliche Raten der Verlangsamung gibt. Die Pulsare wechseln zwischen beiden Raten hin- und her - und das abrupt und recht unvorhersehbar. "Diese Wechsel stehen im Zusammenhang mit der Form der Pulse, die der Pulsar aussendet", sagt George Hobbs, der ebenfalls an der Studie beteiligt war.

Ein solcher Puls oder Tick entsteht immer dann, wenn die Radiowellen des Pulsars auf das Teleskop treffen. Weil die Sterne, gesteuert durch ihr Magnetfeld, nur zwei gebündelte Strahlen aussenden, können die Forscher aus diesen Ticks die Umdrehungsgeschwindigkeit der Pulsare berechnen. Präzise Messungen der Pulsform über eine möglichst lange Zeitspanne erlauben es den Astronomen, die Abnahme der Pulsperiode extrem genau zu bestimmen und daraus einen Korrekturfaktor für den jeweiligen Pulsar abzuleiten. Damit wird die Ganggenauigkeit der Pulsaruhren erheblich gesteigert.

"Unsere Ergebnisse ermöglichen einen völlig neuen Zugang zu den extremen Bedingungen in der Umgebung von Neutronensternen", sagt Michael Kramer. "Sie haben das Potenzial, unsere ohnehin schon sehr präzisen Untersuchungen der Gravitation nochmals entscheidend zu verbessern." Kramer, Direktor am Max-Planck-Institut für Radioastronomie und Leiter der Forschungsgruppe Radioastronomische Fundamentalphysik, erhält für seine wissenschaftlichen Entdeckungen bei der Erforschung von Neutronensternen den Akademiepreis 2010 der Berlin-Brandenburgischen Akademie der Wissenschaften.

Die Forscher hoffen, dass die neuen Erkenntnisse über die Verlangsamung der Pulsperiode von Pulsaren die Wahrscheinlichkeit erhöht, mithilfe der am schnellsten rotierenden Neutronensterne endlich die ersten Gravitationswellen direkt in der Struktur der Raumzeit nachzuweisen. "Weltweit haben schon viele Observatorien versucht, über Pulsare diejenigen Gravitationswellen nachzuweisen, die bei der Bildung von supermassereichen Schwarzen Löchern im Universum ausgesandt werden", sagt Teammitglied Ingrid Stairs. "Mit unserer neuen Technik sollten wir in der Lage sein, die Signale von Gravitationswellen zu erfassen, die sich im Moment noch in den Unregelmäßigkeiten des Pulsarsignals verbergen."

Originalveröffentlichung:

Andrew Lyne, George Hobbs, Michael Kramer, Ingrid Stairs, Ben Stappers
Switched magnetospheric regulation of pulsar spin-down
Science Express, 24. Juni 2010
Weitere Informationen erhalten Sie von:
Prof. Dr. Michael Kramer
Max-Planck-Institut für Radioastronomie, Bonn
Tel.: +49-228-525-278
E-Mail: mkramer@mpifr.de
Prof. Dr. Andrew Lyne
Jodrell Bank Centre for Astrophysics, University of Manchester, UK
Tel.: +44 1477 572640
E-Mail: andrew.lyne@manchester.ac.uk
Dr. Norbert Junkes
Max-Planck-Institut für Radioastronomie, Bonn
Tel.: +49-228-525-399
E-Mail: njunkes@mpifr.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle
07.12.2016 | Goethe-Universität Frankfurt am Main

nachricht Das Universum enthält weniger Materie als gedacht
07.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie