Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pulsare als Atomuhren

25.06.2010
Die Korrektur von Rotationsinstabilitäten macht Neutronensterne zu den besten Zeitmessern im Universum

Ein internationales Team von Astronomen hat das Verhalten von kosmischen Uhren untersucht und dabei ein Verfahren entdeckt, das sie zu den mit Abstand genauesten Zeitmessern im Universum macht. Die Wissenschaftler, darunter Michael Kramer vom Max-Planck-Institut für Radioastronomie in Bonn, werteten dazu die Signale von Pulsaren aus. Diese beobachten Forscher bereits mehrere Jahrzehnte mit dem 76-Meter-Radioteleskop am englischen Observatorium Jodrell-Bank. (Science Express, 24. Juni 2010)


Schematische Darstellung eines Pulsars. Pulsare stellen die genauesten natürlichen Uhren dar, die man bisher kennt. Bild: D. Cantin, DarwinDimensions, McGill Universität

Pulsare sind kompakte Überreste sehr massereicher Sterne, die am Ende ihres Lebens als Supernova explodierten. In einer solchen stellaren "Leiche", auch Neutronenstern genannt, ist die Materie extrem dicht gepackt, der Durchmesser auf etwa 20 Kilometer geschrumpft. Der erste Pulsar wurde im Jahr 1967 entdeckt. Mehr als 1700 solcher Objekte kennen die Astronomen heute, und sie untersuchen sie vor allem im Bereich der Radiofrequenzen. Pulsare drehen sich mit hoher Geschwindigkeit um ihre Achse, wobei sie gerichtete Strahlung aussenden. Überstreicht der Strahlungskegel die Erde, scheint der Stern kurz aufzublitzen - zu "pulsieren" (daher die Bezeichnung Pulsar).

Pulsare besitzen eine hohe Rotationsstabilität, das heißt, sie halten die Dauer einer Drehung um ihre Achse mit extremer Genauigkeit ein. Diese Tatsache hat unter anderem zur Entdeckung der ersten extrasolaren Planeten geführt und ermöglicht eine Reihe von Tests zur Überprüfung unserer Theorien über das Universum. Allerdings ist diese Rotationsstabilität nicht perfekt, und irreguläre Effekte in ihrem Umlauf schränken die Verwendung der Pulsare als hochpräzise Zeitmesser erheblich ein.

Das Forscherteam, angeführt von Andrew Lyne, hat Beobachtungen von Pulsaren mit dem 76-Meter-Lovell-Radioteleskop dazu verwendet, diese Abweichungen systematisch zu untersuchen und dabei eine Methode entdeckt, mit der sie sich korrigieren lassen. "Die besten Uhren der Menschheit benötigen alle eine Korrektur, etwa um die Effekte von schwankenden Temperaturen, unterschiedlichem atmosphärischem Druck, Feuchtigkeit oder dem lokalen Magnetfeld auszugleichen", sagt Lyne. "In unseren Beobachtungen haben wir eine Methode gefunden, unsere astrophysikalischen Uhren, die Pulsare, zu korrigieren."

Die Umdrehungsgeschwindigkeit, mit der die Pulsare um ihre Achse rotieren, nimmt mit der Zeit ganz langsam, aber unregelmäßig ab. Die Wissenschaftler haben herausgefunden, dass diese Unregelmäßigkeit vor allem dadurch entsteht, dass es zwei unterschiedliche Raten der Verlangsamung gibt. Die Pulsare wechseln zwischen beiden Raten hin- und her - und das abrupt und recht unvorhersehbar. "Diese Wechsel stehen im Zusammenhang mit der Form der Pulse, die der Pulsar aussendet", sagt George Hobbs, der ebenfalls an der Studie beteiligt war.

Ein solcher Puls oder Tick entsteht immer dann, wenn die Radiowellen des Pulsars auf das Teleskop treffen. Weil die Sterne, gesteuert durch ihr Magnetfeld, nur zwei gebündelte Strahlen aussenden, können die Forscher aus diesen Ticks die Umdrehungsgeschwindigkeit der Pulsare berechnen. Präzise Messungen der Pulsform über eine möglichst lange Zeitspanne erlauben es den Astronomen, die Abnahme der Pulsperiode extrem genau zu bestimmen und daraus einen Korrekturfaktor für den jeweiligen Pulsar abzuleiten. Damit wird die Ganggenauigkeit der Pulsaruhren erheblich gesteigert.

"Unsere Ergebnisse ermöglichen einen völlig neuen Zugang zu den extremen Bedingungen in der Umgebung von Neutronensternen", sagt Michael Kramer. "Sie haben das Potenzial, unsere ohnehin schon sehr präzisen Untersuchungen der Gravitation nochmals entscheidend zu verbessern." Kramer, Direktor am Max-Planck-Institut für Radioastronomie und Leiter der Forschungsgruppe Radioastronomische Fundamentalphysik, erhält für seine wissenschaftlichen Entdeckungen bei der Erforschung von Neutronensternen den Akademiepreis 2010 der Berlin-Brandenburgischen Akademie der Wissenschaften.

Die Forscher hoffen, dass die neuen Erkenntnisse über die Verlangsamung der Pulsperiode von Pulsaren die Wahrscheinlichkeit erhöht, mithilfe der am schnellsten rotierenden Neutronensterne endlich die ersten Gravitationswellen direkt in der Struktur der Raumzeit nachzuweisen. "Weltweit haben schon viele Observatorien versucht, über Pulsare diejenigen Gravitationswellen nachzuweisen, die bei der Bildung von supermassereichen Schwarzen Löchern im Universum ausgesandt werden", sagt Teammitglied Ingrid Stairs. "Mit unserer neuen Technik sollten wir in der Lage sein, die Signale von Gravitationswellen zu erfassen, die sich im Moment noch in den Unregelmäßigkeiten des Pulsarsignals verbergen."

Originalveröffentlichung:

Andrew Lyne, George Hobbs, Michael Kramer, Ingrid Stairs, Ben Stappers
Switched magnetospheric regulation of pulsar spin-down
Science Express, 24. Juni 2010
Weitere Informationen erhalten Sie von:
Prof. Dr. Michael Kramer
Max-Planck-Institut für Radioastronomie, Bonn
Tel.: +49-228-525-278
E-Mail: mkramer@mpifr.de
Prof. Dr. Andrew Lyne
Jodrell Bank Centre for Astrophysics, University of Manchester, UK
Tel.: +44 1477 572640
E-Mail: andrew.lyne@manchester.ac.uk
Dr. Norbert Junkes
Max-Planck-Institut für Radioastronomie, Bonn
Tel.: +49-228-525-399
E-Mail: njunkes@mpifr.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik