Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

PTB vereint Magnetresonanz- und Radar-Technologie in einem Prototyp

09.09.2008
Neues Verfahren soll diagnostische Bilder verbessern

Achtung, stillgelegen! Diese Aufforderung sollten sich Patienten unbedingt zu Herzen nehmen, wenn sie sich in ein Magnetresonanztomographie-(MRT)-Gerät legen müssen - andernfalls entstehen auf den vom MRT-Gerät angefertigten Bildern Bewegungsartefakte.

Das sind störende Bildelemente, die die Bewegung des Körpers anzeigen, nicht aber den Körper selbst. Bewegungen sind ein Störfaktor, der zu Unschärfen und "Geistern" in dem MRT-Bild führt. Patienten müssen jedoch nicht nur viel Geduld, sondern auch Ausdauer mitbringen, da Untersuchungen im MRT bis zu 30 Minuten dauern können.

Doch selbst dann, wenn sich der Patient während der gesamten Dauer nicht ein einziges Mal bewegt, können Bewegungsartefakte nicht ausgeschlossen werden. Manche Teile des Körpers bewegen sich immer - zum Beispiel dehnt sich beim Einatmen die Lunge und der Brustkorb hebt und senkt sich. Auch die Bewegung des Herzmuskels führt zu Störungen in dem Bild - während des Pumpvorgangs verformt er sich nämlich.

Mit Hilfe eines Ultrabreitband-Radargerätes können solche Vitalbewegungen bei der Messung berücksichtigt und die MRT-Messungen korrigiert werden. Der gemeinsame Betrieb beider Techniken wird mit Hilfe eines an der Physikalisch Technischen Bundesanstalt (PTB) entwickelten Prototyps getestet, der in Kooperation mit der Technischen Universität Ilmenau entstanden ist. Dieses Projekt wird von der Deutschen Forschungsgemeinschaft (DFG) im Rahmen eines auf sechs Jahre angelegten Schwerpunktprogrammes gefördert.

Ultrabreitband-Radarsignale zeichnen sich - wie der Name schon sagt - durch ihre hohe Bandbreite aus. Das bedeutet, dass sie einen großen Bereich des elektromagnetischen Strahlungsspektrums umfassen - sie haben eine Bandbreite von bis zu 10 Gigahertz und beinhalten damit viele verschiedene Frequenzkomponenten. Für Materialanalysen, zum Beispiel von biologischem Gewebe, sind solche heterogenen Signale aus diesem Grund bestens geeignet.

Im menschlichen Körper kann man damit Objekte bis in den Millimeterbereich auflösen. Die Sendeleistung eines Ultrabreitband-Radars beträgt nur etwa ein Milliwatt und ist damit milliardenfach kleiner als die Pulsleistung bekannter Radare. Selbst die Sendeleistung eines Mobiltelefons ist noch tausendfach größer als die eines Ultrabreitband-Radars. Damit ist ein Gefährdungspotential für organisches Gewebe wie z.B. bei einer Röntgenbestrahlung vollständig ausgeschlossen.

Wird ein Ultrabreitband-Radarsignal auf einen Menschen gelenkt, dann dringt es in den Körper ein. Da die verschiedenen Gewebeschichten des menschlichen Körpers nicht einheitlich auf elektromagnetische Wellen unterschiedlicher Frequenz reagieren, reflektieren sie das Signal auf verschiedene Weise. Die Reflexion des Signals kann dann wieder vom Radargerät erfasst werden. Da das Radargerät andere Eigenschaften des menschlichen Gewebes erfassen kann, als die MRT, kann es zusätzliche Informationen liefern, die mit den MR-Bildern kombiniert werden können. Insbesondere kann es die Bewegung von Grenzflächen zwischen den verschiedenen Gewebearten im menschlichen Körper messen. Eine solche Grenzfläche stellt zum Beispiel der Herzmuskel dar. Die anatomischen Verschiedenheiten der einzelnen Patienten werden dabei bei jedem Messvorgang berücksichtigt.

Mit Hilfe dieser zusätzlichen Radarmessung können die vom MRT erstellten Bilder präziser gemacht werden. Das zugeschaltete Radargerät bietet nämlich einerseits die Möglichkeit, mit den online erhobenen Positionsdaten des Herzens eine "Nachjustage" der Messsequenz des MRTs auf die aktuelle Herzposition in Echtzeit vorzunehmen. Die zweite Möglichkeit besteht in der nachträglichen Positionskorrektur der durch das MRT erhobenen Daten.

Wissenschaftler der Arbeitsgruppe "MR-Messtechnik" des Fachbereichs "Medizinische Messtechnik" der PTB haben beim Bau eines Prototyps eine in der Medizin übliche Magnetresonanztomographie-Anlage und ein Ultrabreitband-Radar der TU Ilmenau kombiniert. Mit diesem Muster soll die prinzipielle Durchführbarkeit einer Magnetresonanz-Ultrabreitband-Kombination getestet und evaluiert werden. Die Verbesserung des bildgebenden MRT-Verfahrens soll zur präziseren medizinischen Diagnostik beitragen.

Von wissenschaftlichem Interesse sind bei diesem Projekt auch Fragestellungen zur Ausbreitung elektromagnetischer Wellen in geschichteten dielektrischen Medien, und zur Veränderung des Ultrabreitband-Radarsignals aufgrund von Schichtverschiebungen. Verschiedene Algorithmen zur Bewegungsdetektion sollen innerhalb des Projekts entwickelt, überprüft, verbessert und ihre Robustheit gegenüber simulierten Störungen evaluiert werden - eine wichtige Voraussetzung für das tadellose Funktionieren dieser Anlagen, die später auch in Kliniken Verwendung finden sollen.

Weiterer Kooperationspartner ist das Universitätsklinikum Jena, das insbesondere, in enger Zusammenarbeit mit der Technischen Universität Ilmenau, auf die Weiterentwicklung dieser Radar-Technik zur Detektion von Tumoren hinarbeitet.

Ansprechpartner:
Dr. Florian Thiel, Arbeitsgruppe 8.11 "MR-Messtechnik", E-Mail: Florian.Thiel@ptb.de, Tel.: 030 3481 7529

Imke Frischmuth | idw
Weitere Informationen:
http://www.ptb.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise