Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

PTB vereint Magnetresonanz- und Radar-Technologie in einem Prototyp

09.09.2008
Neues Verfahren soll diagnostische Bilder verbessern

Achtung, stillgelegen! Diese Aufforderung sollten sich Patienten unbedingt zu Herzen nehmen, wenn sie sich in ein Magnetresonanztomographie-(MRT)-Gerät legen müssen - andernfalls entstehen auf den vom MRT-Gerät angefertigten Bildern Bewegungsartefakte.

Das sind störende Bildelemente, die die Bewegung des Körpers anzeigen, nicht aber den Körper selbst. Bewegungen sind ein Störfaktor, der zu Unschärfen und "Geistern" in dem MRT-Bild führt. Patienten müssen jedoch nicht nur viel Geduld, sondern auch Ausdauer mitbringen, da Untersuchungen im MRT bis zu 30 Minuten dauern können.

Doch selbst dann, wenn sich der Patient während der gesamten Dauer nicht ein einziges Mal bewegt, können Bewegungsartefakte nicht ausgeschlossen werden. Manche Teile des Körpers bewegen sich immer - zum Beispiel dehnt sich beim Einatmen die Lunge und der Brustkorb hebt und senkt sich. Auch die Bewegung des Herzmuskels führt zu Störungen in dem Bild - während des Pumpvorgangs verformt er sich nämlich.

Mit Hilfe eines Ultrabreitband-Radargerätes können solche Vitalbewegungen bei der Messung berücksichtigt und die MRT-Messungen korrigiert werden. Der gemeinsame Betrieb beider Techniken wird mit Hilfe eines an der Physikalisch Technischen Bundesanstalt (PTB) entwickelten Prototyps getestet, der in Kooperation mit der Technischen Universität Ilmenau entstanden ist. Dieses Projekt wird von der Deutschen Forschungsgemeinschaft (DFG) im Rahmen eines auf sechs Jahre angelegten Schwerpunktprogrammes gefördert.

Ultrabreitband-Radarsignale zeichnen sich - wie der Name schon sagt - durch ihre hohe Bandbreite aus. Das bedeutet, dass sie einen großen Bereich des elektromagnetischen Strahlungsspektrums umfassen - sie haben eine Bandbreite von bis zu 10 Gigahertz und beinhalten damit viele verschiedene Frequenzkomponenten. Für Materialanalysen, zum Beispiel von biologischem Gewebe, sind solche heterogenen Signale aus diesem Grund bestens geeignet.

Im menschlichen Körper kann man damit Objekte bis in den Millimeterbereich auflösen. Die Sendeleistung eines Ultrabreitband-Radars beträgt nur etwa ein Milliwatt und ist damit milliardenfach kleiner als die Pulsleistung bekannter Radare. Selbst die Sendeleistung eines Mobiltelefons ist noch tausendfach größer als die eines Ultrabreitband-Radars. Damit ist ein Gefährdungspotential für organisches Gewebe wie z.B. bei einer Röntgenbestrahlung vollständig ausgeschlossen.

Wird ein Ultrabreitband-Radarsignal auf einen Menschen gelenkt, dann dringt es in den Körper ein. Da die verschiedenen Gewebeschichten des menschlichen Körpers nicht einheitlich auf elektromagnetische Wellen unterschiedlicher Frequenz reagieren, reflektieren sie das Signal auf verschiedene Weise. Die Reflexion des Signals kann dann wieder vom Radargerät erfasst werden. Da das Radargerät andere Eigenschaften des menschlichen Gewebes erfassen kann, als die MRT, kann es zusätzliche Informationen liefern, die mit den MR-Bildern kombiniert werden können. Insbesondere kann es die Bewegung von Grenzflächen zwischen den verschiedenen Gewebearten im menschlichen Körper messen. Eine solche Grenzfläche stellt zum Beispiel der Herzmuskel dar. Die anatomischen Verschiedenheiten der einzelnen Patienten werden dabei bei jedem Messvorgang berücksichtigt.

Mit Hilfe dieser zusätzlichen Radarmessung können die vom MRT erstellten Bilder präziser gemacht werden. Das zugeschaltete Radargerät bietet nämlich einerseits die Möglichkeit, mit den online erhobenen Positionsdaten des Herzens eine "Nachjustage" der Messsequenz des MRTs auf die aktuelle Herzposition in Echtzeit vorzunehmen. Die zweite Möglichkeit besteht in der nachträglichen Positionskorrektur der durch das MRT erhobenen Daten.

Wissenschaftler der Arbeitsgruppe "MR-Messtechnik" des Fachbereichs "Medizinische Messtechnik" der PTB haben beim Bau eines Prototyps eine in der Medizin übliche Magnetresonanztomographie-Anlage und ein Ultrabreitband-Radar der TU Ilmenau kombiniert. Mit diesem Muster soll die prinzipielle Durchführbarkeit einer Magnetresonanz-Ultrabreitband-Kombination getestet und evaluiert werden. Die Verbesserung des bildgebenden MRT-Verfahrens soll zur präziseren medizinischen Diagnostik beitragen.

Von wissenschaftlichem Interesse sind bei diesem Projekt auch Fragestellungen zur Ausbreitung elektromagnetischer Wellen in geschichteten dielektrischen Medien, und zur Veränderung des Ultrabreitband-Radarsignals aufgrund von Schichtverschiebungen. Verschiedene Algorithmen zur Bewegungsdetektion sollen innerhalb des Projekts entwickelt, überprüft, verbessert und ihre Robustheit gegenüber simulierten Störungen evaluiert werden - eine wichtige Voraussetzung für das tadellose Funktionieren dieser Anlagen, die später auch in Kliniken Verwendung finden sollen.

Weiterer Kooperationspartner ist das Universitätsklinikum Jena, das insbesondere, in enger Zusammenarbeit mit der Technischen Universität Ilmenau, auf die Weiterentwicklung dieser Radar-Technik zur Detektion von Tumoren hinarbeitet.

Ansprechpartner:
Dr. Florian Thiel, Arbeitsgruppe 8.11 "MR-Messtechnik", E-Mail: Florian.Thiel@ptb.de, Tel.: 030 3481 7529

Imke Frischmuth | idw
Weitere Informationen:
http://www.ptb.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

27.06.2017 | Biowissenschaften Chemie

Wave Trophy 2017: Doppelsieg für die beiden Teams von Phoenix Contact

27.06.2017 | Unternehmensmeldung

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie